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Metabolic P Systems

• it is a computational model inside Membrane Computing

• it is deterministic

• it is a dynamical system

• it is designed for real-world application (in Biology)

• it is simple (to read, to understand, to express process)

• . . .
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Metabolic P Systems: Simplicity

1. set of variables

2. set of rules (of how the variables interchanges)

3. set of functions fluxes (rate of variation of the rules)
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Metabolic P Systems: Flavors

1. MP Grammars

r1 : ∅ → C ϕ1 = 0.0030015 + 0.0009995× C

r2 : C → S ϕ2 = 0.001× C + 0.001× S

r3 : S → ∅ ϕ3 = 0.0029985 + 0.0010005× S

2. MP Graphs

[6]
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Electric Circuits

• (mathematical) model of physical ones

• simplification of analysis (e.g. Maxwell’s laws)

• simpler description: equations, block diagrams, schematic
diagrams, . . .

• transform signals into signals (reactive systems)
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Electric Circuits: Flavors

1. analog circuits

1.1 linear circuits (resistors, capacitors and inductors)
1.2 nonlinear circuits (diodes, transistors, . . . )

2. digital circuits

2.1 combinational circuits (pure functions: f (x) = y , always)
2.2 sequential circuits (memory units are essential1)

1Does it remind you of Chomsky hierarchy?
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Electric Circuirs: Computational Power

• analog circuits: process real (R) values, continuously (in time)

• digital circuits: fixed-precison (Q) values, discretely (in time)
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Electric Circuirs: Computational Power

• analog circuits: process real (R) values, continuously (in time)

• digital circuits: fixed-precison (Q) values, discretely (in time)

is that a set theoretical discussion?
ℵ1 and infinite cardinality versus ℵ0 finite representation and finite

cardinality?
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Research Proposal: 2013

ξ(Cell) = Circuit

∃ξ, ζ? ζ = ξ−1?

ζ(Circuit) = Cell
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Research Proposal: 2013

demonstration of a mathematical equivalence between dynamics
described by Metabolic P systems and electronics circuits
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The Activities (Since Then)
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Disclamer

• activities may look sparse, but they have (or had) a logical track

• they are presented in chronological order in order to understand
choices

• details are ommitted (for everybody’s sake) without compromising
the argument

• it is not expected that anyone master all the fields involved =⇒
questions shouldn’t be taken further
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• activities may look sparse, but they have (or had) a logical track

• they are presented in chronological order in order to understand
choices

• details are ommitted (for everybody’s sake) without compromising
the argument

• it is not expected that anyone master all the fields involved =⇒
questions shouldn’t be taken further

• if something looks too obvious (meaning “easy”), probably some
important argument was lost or misunderstand (or am I a great
presenter?)
◦ by the other side, things shouldn’t be too complicated
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Analysis on Analog Circuits: Why?

• the real question is: why not?

• models integro-differential equations

• highest computational power [10]

• fast performance [12]

• agenda of diverse researchers [3, 2, 8, 15]

• MP has (sine and cosine) oscillators as well as analog circuits
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Analysis on Analog Circuits: How? (1)

• reverse engineering

• simple analog circuits: oscillators such as RC, RL, RLC, . . .

• Log Gain Stoichiometric Stepwise (LGSS) regression algorithm
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Analysis on Analog Circuits: How? (2)
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Analysis on Analog Circuits: How? (3)

Name of the Dictionary Composition Rule

All Functions D = F
Trigonometric D = {1, x, sin(x), cos(x)}

Complex Functions D = {1, x, exp(x), 1
1+exp(−x)

, ⌊x⌋}

Polynomial Functions D = {1, xn} and redefined n ∈ {1, 2, 3, 4, 5}
Polynomial and Trigonometric Functions D = {1, xn, sin(x), cos(x)}
Composition of All Functions D = F ∪ C

Composition of Complex Functions D = F ∪ C and redefined F = {1, x, exp(x), 1
1+exp(−x)

, ⌊x⌋}

Composition of Trigonometric Functions D = F ∪ C and redefined F = {1, x, sin(x), cos(x)}
Complete (All Possible Combinations) D = F ∪ C ∪ I

where























n ∈ {1, 2, 3}
x ∈ {Vs ,Vc , Ic}
F = {1, xn, sin(x), cos(x), exp(x), 1

1+exp(−x) , ⌊x⌋}

C = {f ◦ g : f , g ⊆ F}
I = { 1

h : h ∈ F ∪ C \ x}
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Analysis on Analog Circuits: What?

• few correct inferences (basically on sine/cosine)

• unable to deal with transient

• complicated and complex for input signals different from sine or
cosine (still, complex fluxes)

• no silver bullet: non-linear optimization, theory-based dictionaries,
fast Fourier transform analysis
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MP version of FFT: Why?

• because our approach to analog circuits failed

• but electrical engineers use FFT and Laplace transform to analyze
these circuits

• because we know all (periodic) signals may be decomposed in
harmonic (Fourier) series

• MP is able to produce sine and cosine with a simple grammar (and
we made it generates other frequencies)

• regression with MP-I/O is good to point if a variable (rule) is need
in the system
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• because our approach to analog circuits failed

• but electrical engineers use FFT and Laplace transform to analyze
these circuits

• because we know all (periodic) signals may be decomposed in
harmonic (Fourier) series

• MP is able to produce sine and cosine with a simple grammar (and
we made it generates other frequencies)

• regression with MP-I/O is good to point if a variable (rule) is need
in the system

everything seems to fit together in this approach
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MP version of FFT: How? (1)

1. verified that MP generates sines and cosines in different frequencies

2. generate (big) range of sines and cosines (memoization as time
series)

3. regression algorithm in the input signal using the harmonic curves
of different frequencies as variables
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MP version of FFT: How? (1)

1. verified that MP generates sines and cosines in different frequencies

2. generate (big) range of sines and cosines (memoization as time
series)

3. regression algorithm in the input signal using the harmonic curves
of different frequencies as variables

4. implemented diverse versions of the algorithm
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MP version of FFT: How? (2)

• generates sines and cosines via MP

• generates sines and cosines via MATLAB

• has a fixed-range of frequencies

• computes the range of frequencies dynamically (τ of MP and
Nyquist frequency)
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MP version of FFT: What? (1)

• success

• accuracy benchmark is better than MATLAB/FFTW

• speed benchmark isn’t so promising, one order of magnitude slower

◦ MP is “heavier” than divide-and-conquer strategy of FFT
◦ interpreted code (MATLAB) and virtual machine (JVM)

underperforms when compared to function (MATLAB’s FFT) backed
by native code (FFTW)

• project suspended for period abroad
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MP version of FFT: What? (2)
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Digital Circuits: Why?

• because it is a specialization of electric circuits (should be simpler)

• because there is an equivalence hardware-software [14, 13]

• because it is a discrete system such as MP

• because the research proposal has origin in some ideas from digital
circuits

• because its component analysis is easier

• because its design is easier (great quantity of tools)

• because the group I was worked with it
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Digital Circuits: How? (1)

Implementation (or The Short Road)

• implemented MP systems in VHDL

• converted VHDL to FPGA

• “REPL”: read, evaluate, program, loop

• model systems by components (arithmetical)
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Implementation (or The Short Road)

• implemented MP systems in VHDL

• converted VHDL to FPGA

• “REPL”: read, evaluate, program, loop

• model systems by components (arithmetical)
◦ before: attempts using previous experience
◦ later: arithmetical network
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Digital Circuits: How? (2)

Formal Proof (or The Long Road)

• pencil and paper

• trial and error

• spanned through fields such as: dynamical systems, automata
theory, computability, logic synthesis, control theory, algebraic
groups, commutative diagrams, category theory, to name a few

• communication with other researchers (which gave me different
perspectives and a solution)
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Digital Circuits: How? (2)

Formal Proof (or The Long Road)

• pencil and paper

• trial and error

• spanned through fields such as: dynamical systems (influenced by
Hinrichsen and Pritchard [4]), automata theory, computability,
logic synthesis, control theory, algebraic groups, commutative
diagrams, category theory, to name a few

• communication with other researchers (which gave me different
perspectives and a solution)
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Digital Circuits: What? (1)

Implementation (or The Short Road)

• success [2]

• working hardware that performs MP dynamics (including its
accumulated errors!)

• framework for component-level design of MP systems (arithmetical
network)
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Digital Circuits: What? (2)

Formal Proof (or The Long Road)

• two almost proofs: diagram chasing and constructive one

• representation of both MP and digital circuits as dynamical
systems [4, Definition 2.1.1]
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Digital Circuits: What? (2)

Formal Proof (or The Long Road)

• two almost proofs: diagram chasing and constructive one

• representation of both MP and digital circuits as dynamical
systems [4, Definition 2.1.1]

• questions about MP dynamics
◦ convergence of the systems
◦ generalization of the definition of MP
◦ carriers of accumulative errors

all of this before my return

26 de 34



Digital Circuits: What? (3)

Formal Proof (or The Long Road after return)

• change of perspective: computational equivalence

• return to previous works of the group [7]

• MP ⇔ Register Machine ∧ digital circuits ⇔ UTM =⇒ MP ⇔
digital circuits2

2By the Church-Turing thesis [5, 11, § 5.1; p. 181].
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Digital Circuits: What? (3)

Formal Proof (or The Long Road after return)

• change of perspective: computational equivalence

• return to previous works of the group [7]

• MP ⇔ Register Machine ∧ digital circuits ⇔ UTM =⇒ MP ⇔
digital circuits2

still ongoing work, nonetheless!
(but already a good result! )

2By the Church-Turing thesis [5, 11, § 5.1; p. 181].
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Personal Perspectives on the Research
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Personal Perspectives on the Research

• from solely mathematics to mathematics, computer science,
electrical engineering

• initial scope practically reached, but we’re pushing for more
(algorithms or methodologies for automatic translation)

• no wasted time: looking back, knowledge and results are
impressive (lacking to publish)

• keep the wheel turning, finish projects on suspension

• but focus on the core of the research

• real-world is asking for similar solutions and I venture to say we’re
pavimenting the way of a new research field (impressions from
SSBSS 2014 and state-of-the-art researches [8, 9, 1])

• pursuit of theoretical results is risky, but it is incredibly rewarding
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Research Proposal: 2014

demonstration of a mathematical equivalence between dynamics
described by Metabolic P systems and electronics circuits, particularly

digital ones
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The End

Thank you!
Grazie!
Ačiū!

Obrigado!

31 de 34



References (1)

Jacob Beal, Ting Lu, and Ron Weiss.

Automatic compilation from high-level biologically-oriented programming language to genetic regulatory
networks.
PloS one, 6(8):e22490, January 2011.

Cristian Sorin Calude and Gheorghe Pun.

Bio-steps beyond Turing.
Bio Systems, 77(1-3):175–94, November 2004.
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