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Abstract

The present work proposes the study of the equivalence between
electronic circuits—digital and analog ones—and Metabolic P system.
This result provides a new application field for MP system, but also
enables the exchange of knowledge between different research field. At
last, it may provide the capability to compose hardware that imitates
the behaviour of living cell and tissues for a wide range of purposes.

1 Introduction

Science is too broad for just one kind of language. In the past, philosophy was
the way of choice for all scientific expression; nowadays, however, the concept
of science is so extensive that many “dialects” (i.e., fields of study such as
mathematics, physics, biology, etc.) are necessary to formulate questions—
as well as answer them—about the diverse patterns observed in nature in
a very reasonable and comprehensible way. Each of this fields has its own
“set of tools” such as special vocabulary that compress lots of information
in concepts, modeling and representations systems that states the object
of study in a condensed and clear definition that makes used of common
knowledge presented in the field and particular techniques for problem solving
based on the accumulated results in the area.

It is not difficult to find, nonetheless, instances of scientific studies that
span beyond one particular discipline or has equivalent formulation in others;
those, usually, represent general patterns of nature and the rules they derive
may be usefully applied in many different kind of situations, with diverse
origins. As an illustration, the concept of (ordinary) differential equations
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has (one of) its (controversial) origin(s) in physics, with the studies performed
by Sir Isaac Newton; today, nevertheless, (ordinary) differential equations
extended over a series of different subjects, having applications not only
in physics, but also in mathematics, engineering, chemistry, biology, social
sciences and many other fields.

But as much as a concept spreads over other domains, it becomes neces-
sary to find lossless procedures to translate it from one domain to another,
bringing to the new domain all the intrinsic advantages of the concept in its
original representation but excelled by a set of fresh features provided by the
new realm. Proceeding with the (ordinary) differential equation example, a
mapping of them from the ubiquitous temporal space to the frequency space
exists and is needed by a range of applications, specially in electrical cir-
cuits analysis. This mapping, called Laplacian transform, not only translate
the concept of “variational calculus” to other domains, but also enriches the
problem solving methodology transforming the complex equations in a (gen-
erally simple) algebraic ones; in this new portrayal, the resolution of those
equation is simplified, providing a final solution for the equations in cheaper
procedures (in an effort context) than in its original domain. Finally, with
the application of an (economical) inverse mapping, the result can be ported
back to the temporal domain, complete, lossless and accurate.

Following a similar approach to the aforementioned examples, the present
work proposes the research for a possible existence of an equivalence be-
tween electrical circuits and a particular instance of membrane computing,
the metabolic P systems. This equivalence would permit an electrical circuit,
let it be a digital or analog one, to be modelled as a metabolic P system under
its well defined (discrete) mathematics formalism; also, it would supply the
electrical circuits analysis and design with the existing metabolic P systems
capability— through the usage of methods such as Log-Gain Stoichiomet-
ric Stepwise regression—of inference of rules from a simplified input-output
values model of grammar. In the opposite direction, on the other hand,
the equivalence would provide the usage of circuit reduction techniques in
the model, what could simplify the existing metabolic P system, as well as
it would ease the composition of electrical circuits that reproduces the be-
haviour of already existing metabolic P systems.

Then, the present work is structured to clearly disclose the proposal in
the following manner: sections 2 and 3 describe the general theoretical back-
ground sustaining the main idea of the thesis proposal; section 4 presents
the thesis proposal and the research methodology to be applied. Finally, at
section 5, a brief conclusion and trade-offs of the proposed topic are discussed.
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2 Metabolic P Systems

The cell, one of the most basics unity of life, is a small dimension but complex
and dynamical system limited by a membrane which separates the external
world from the internal cellular machinery. This membrane acts as an inter-
face for the cell, selectively collecting molecules from its surroundings and
expelling others that were produced inside the cell.

This material exchanging process “feeds” the internal machinery of the
cell, activating (or de-activating) a series of interconnected sub-process trig-
gered by the balance between the quantities and types of substances present
in cell’s cytoplasm—the fluid area inside the cell and bounded by the ex-
ternal membrane. This mechanism, nevertheless, suggests the existence of
a computational process inside the cell, where inputted material (external
molecules) are transformed, under certain rules, in outputted one (molecules
sent beyond the membrane boundaries).

Aware of this mechanism, Gheorge Păun proposed a computational model
called P system [23] based on this membrane interaction in cell systems but,
at the same time, mathematically formal and consistent, using the concepts of
multiset and rewriting systems for the construction of its formal framework.

The Păun’s work, since its beginning in 1998 and first publication in
2000 [22], has been expanded by the scientific community in such a way
that, nowadays, it has separated from the formal languages fields and is now
considered the precursor of the membrane computing area, comprising a series
of computation models based on the aforementioned cellular mechanism.

Although the membrane computing presented lots of powerful computa-
tional models—even with super Turing computational capabilities [4]—and
had as one of its goal to bring the mathematical formalism to the biological re-
search, it lacked an easy and direct way to model metabolic and intra-cellular
interaction problems commonly arisen in studies supported by bioinformat-
ics, making it difficult to model many real-world studies under the proposed
framework.

Attentive to these necessities, Vincenzo Manca proposed a new membrane
computing computational model based on the existing Păun’s P system which
is named Metabolic P system or, for short, MP system [15, 14].

The primary goal of the MP system is to deterministically model metabolic
processes, serving as a powerful (discrete) mathematical tool for expressing
and supporting biological studies in the cell magnifying level; also, it meant
to be a computational “intermediate language” for easy simulation of the
formalizes models; at last, it should use promptly understandable notation
for potential users unfamiliar with the theoretical computer science jargon
commonly found in new computational models.
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Strongly influenced by chemical reactions, MP system has a reaction-like
notation—that can be seen, also, as a formal grammar one—supported by
recurrence equations and shifts the focus from pointwise string rewriting to
a population transformation through the usage of conventional mole concept
(as in chemistry). By the other side, its computational-simulative part is
supported by linear algebra and relies on matrix operations for solving the
recurrence equation system that characterizes the MP system as a (discrete)
dynamical one.

For the sake of abstraction, an MP system can be mathematically repre-
sented using the support of a kind of formal grammar (named MP grammar)
or as a particular type of graph (names MP graph). A mathematical descrip-
tion of both representations follows.

Definition 1 (MP grammar). An MP grammar G is a generative grammar
for time series defined as

G = (M,R, I,Φ)

where:

1. M = {x1, x2, . . . , xn} the finite set of substances (or metabolites), and
n ∈ N the quantities of substances.

2. R = {αj → βj | 1 ≤ j ≤ m} the set of rules (or reactions), with αj and
βj multisets over M , and m ∈ N the number of reactions.

3. I = (x1[0], x2[0], . . . , xn[0]) is the vector of initial values of substances
or the metabolic state at initial step (step 0).

4. Φ = {φ1, φ2, . . . , φm} is a set of functions (also called regulators), in
which every φj : Rn 7→ M, for 1 ≤ j ≤ m, is associated with a rule
rj ∈ R.

Conversely, we may can define the MP graph.

Definition 2 (MP graph). An MP graph is a directed, labeled hypergraph
defined as

H = (V, E)

where:

1. V = M ∪ {`,a}

2. E = {e1, e2, . . . , en} in which ∀i ∈ N, ei = (T,H) with sets T ⊆
2V \{a}, H ⊆ 2V \{`}
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3. ` : E 7→ Φ is the labeling function for each hyperedge.

According to definition 1, G generates (a set of) time series, each of them
representing the “amount of quantity” of the substances during the time.
However, it is important to remind the discrete nature of the MP system
and, although possible that the time series cardinality is infinite, it would
be, at most, ℵ0 (countable infinite set of values). Hence, the time series are

calculated for any time t if and only if
t

τ
∈ N for a given constant τ .

Notwithstanding, the rules αi → βi ∈ R depends, as equivalently happens
in chemical reactions, on the quantities of the “substances” in the system,
which can be expressed with the support of two different concepts: one that
maps the multiplicity expressed in the rule for a substance to the actual
number of molecules (of the substance) in the system, and; the quantity of
mass the unit of the multiplicity represents (for a particular substance).

Hence, if the aforementioned three restrictions are that in consideration
along with an MP grammar G, it is formally defines a MP system.

Definition 3 (MP system). A MP system M is a discrete dynamical defined
as

M = (G, τ, ν, µ)

with

1. G being an MP grammar following the definition 1;

2. τ ∈ R, the period (amount of time) of a computational step;

3. ν ∈ R, the number of molecules that represents the (conventional) mole
in the system;

4. µ ∈ Rn is the vector of the mole masses of substances.

It is important to note there is a parametric form of the MP system in
which there is a set of parameters P = {p0, p1, . . . , pm}, with m ∈ N, that
may influence the regulators of M, i.e. ∃φk ∈ Φ ∧ pq ∈ P : φk ∝ pq.

The (computational) step As described in definition 3 and restated
many other times in text, MP system is a discrete dynamical system, in
which the amounts of the substances are dependent of its previous values
and a variational functional that may depend on other substances and pa-
rameters (in the case of the parametric MP system). This additional variance
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through time is represented as a recurrent equation which the future value
of a substance X is represented as x[i+ 1] ∝ x[i].

For the computation of these step values, nonetheless, two mathematical
accessories were developed. The first, the stoichiometric matrix, is based on
the arithmetic executed over chemical reactions to calculate the balance of
molecules in a chemical system; the other, equational metabolic algorithm,
synthesizes the whole computational process specified by the an MP system.

Definition 4 (Stoichiometric matrix). Let ri = αi → βi, where αi (with an

equivalent for βi) is represented as
∑

k+i,j ×Xj | ki,j ∈ N ∧Xj ∈M .

Let mult+(Xj, ri) = k+i,j be the multiplicity, for the right side (αi) of the

rule ri, of the substance Xj in the rule. Similarly, there is mult−(Xj, ri) = k−i,j
for the left side (βi) of the rule.

A stoichiometric matrix A, of dimension |M | × |R|, has each of its ele-
ments defined by

al,m = mult+(Xl, rm)−mult−(Xl, rm)

with , 1 ≤ l ≤ |M | and 1 ≤ m ≤ |R|.

Definition 5 (Equational metabolic algorithm—EMA). Let U [i] = (φ1 (i) , φ2 (i) , . . . , φm (i))T

be the vector of values, in the time step i, of all regulators, and A the stoi-
chiometric matrix.

The vector of substance variation at step i, ∆[i], is computed by the
equation

∆[i] = A× U [i]

so-called Equational Metabolic Algorithm whom computes the value of any
substance in the time future time step i+ 1 through the recurrent equation

X[i+ 1] = X[i] + ∆[i]

The above definitions, now, complete specifies the discrete dynamical
system and the ways to compute its values. For the fixation of the concept,
now, an example ([16, § 2.4.2] and [14, § 3.1.1]) will be developed.

Example 1 (Lotka-Volterra Dynamics). The Lotka-Volterra dynamics is a
simple model of the population dynamics of a prey x and a predator y co-
existing in the same environment. It is described by the following ordinary
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differential equations, in which the parameters (A, B, C, D) represents the
average mortality and reproduction factors of the two species.

dx

dt
= (A−By)x

dy

dt
= (Cx−D) y

In the MP system modeling language, the Lotka-Volterra dynamics is de-
fined through four different rules:

1. reproduction of the prey: r1 : x→ 2x;

2. death of the prey: r2 : x→ ∅;

3. reproduction of the predator: r3 : y → 2y;

4. death of the predator: r4 : y → ∅.

It is important to note that the rules do not express the functional corre-
lation between prey and predator, but the “rewrite of the multiset”, i.e., each
prey subject x presented in the environment (multiset) is either substituted
by two other subjects (2x, in the case of reproduction) or none (represented
by the special symbol ∅, expressing the case of death). The same reasoning is
valid for predator rules.

For the expression of the correlation between prey and predator, regula-
tors are associated to each rule, written in a functional and highlighting the
interdependence of the populations through the (function) parameters.

Finally, all the elements of the MP grammar for the Lotka-Volterra dy-
namics are defined and an instance of the it is depicted in table 1.

Rules Regulators

r1 : x→ 2x φ1 = 3× 10−2x
r2 : x→ ∅ φ2 = 9× 10−4 + 9× 10−3xy + 10−4x2y
r3 : y → 2y φ3 = 9× 10−4 + 1.5× 10−2xy + 3× 10−4x2y
r4 : y → ∅ φ4 = 6.6× 10−2y

Table 1: An instance of an MP grammar for the Lotka-Volterra dynamics.
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Figure 1: Prey and predators population for x[0] = 11 and y[0] = 6 for both
MP formulation (table 1) and the differential equation one [16, § 2.4.2].

Dynamical Inverse Problem Although the MP system presents itself as
a good strategy to describe dynamical systems, it requires the discovery of the
correct algebraic form for regulators—what can be found through the usage
of heuristics and reasoning over the dependency relations of the data—as well
as the proper constant function values, what may require a huge amount of
simulations and trials. The above definitions do not provide an algorithmic
way for the inference of those values.

Nonetheless, it is important to note that the discovery of the (algebraic)
rules behind a dynamical system, given a series of input values and another
of observed output ones, is not new, with reports from the 17th century.
Hence, it is not unexpected the presence of it in MP modeling instances.

Attentive to the utility of a procedure that could solve the aforementioned
problem, Manca and Marchetti developed an inference algorithm which takes
two different kinds of time series—correspondent to the inputted and out-
putted data from a dynamical system—and a dictionary of functions to per-
form, through the heavy use of linear algebraic operations and statistics,
inference of the regulators functions that minimizes the approximation er-
ror. For this, they have called it the Log-Gain Stepwise Regression (LGSS)
algorithm for the reason of some internal procedures used to compute the
matching functions and constant for the regulators functional representation.
For the sake of brevity and clearly of context, the details of the algorithm
will be omitted; nonetheless, a complete description of it can be found in
[14].

It is important to note that the application of LGSS has been successful
in a series of environments, such as mathematical functions, complex systems
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and biomedical studies.

3 Signals, Systems and Circuits

A signal is an information carrier [24, 11]. For a reader, a paper is a signal.
For an electrical engineer, the time series of a potential difference (voltage)
is a signal. For a biochemist, a molecule is a signal.

By the other side, a system is a process that generates or modifies a signal
[11]. Reconsidering the examples of the last paragraph, a reader is a system
for the paper signal. An electrical component is a system for a potential
difference signal. And an enzyme is a system for a particular molecule acting
as a signal.

Systems, on the other hand, can be composed of other (smaller) systems
to create bigger systems. It means that systems may work as mathematical
composable abstractions, like arithmetic operations—multiplication operator
is composable of a series of sum operations—or functional ones—let f(x) =
sin(x) and g(x) = cos(x), then (f ◦ g)(x) = sin(cos(x)). Composability of
systems is a very powerful property since it provides a rich set of applications
that goes beyond simply transform an input signal by systems, but also
the production of complex behaviour such as long range communication,
encoding of data and feedback control systems [11, § 1.2].

The representation of a system, on the other hand, must comprise all
the aforementioned characteristics and, in addition, provide a direct, elegant
and simple description of it, independent of how complex are your building
components. Hence, for the purpose of generality, block diagrams are the
standard informal way of representation of systems.

It is important to note that although other representations such as func-
tional composition (◦) may be applied for some (simple) systems, there is
a large set of systems that the complexity exceeds the reasonable usage of
those notations or the visual representation of connected “boxes” are more
expressive. For instance, the feedback control systems are clearly represented
in block diagrams than in standard mathematical notations.

Once the concept of systems is relatively vague, for the sake of clarity
they are classified in several categories depending on the signal spaces they
are subject to, mostly dependent of the author that defines them.

According to Tom Henzinger [9], nonetheless, the systems may be classi-
fied in two big categories, transducive and reactive systems, with the latter
containing five subcategories.

A transducive system—also called combinatorial system—is the one that
acts as function applied to (domain) and producing (range) values; in func-
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tion notation, it is defined as f : X 7→ Y . Its behaviour independent of
the time, always producing the same output f(x) = y for the input value y.
Lending the jargon from functional programming languages, it is said that
transducive systems don’t produce side effects.

A reactive system, however, has a broader definition. Firstly, its input
data are defined in high level as time-dependent functions—in opposition
to values only. Then, it may depend on present but also past information,
bringing more general behaviour to the system specification.

There are five classifications for reactive systems depending on its internal
definitions: (i) memory-free; (ii) delays; (iii) finite-memory; (iv) infinite-
memory; and (v) causality systems.

The memory-free systems are those in which the output values are an
instantaneous transformation of the input values, i.e., y(ti) = f(x(ti)), where
y(ti) is the output produced at the time ti, x(ti) is the data inputted at the
same time ti and f(x) is the transformation function of the system.

Delay systems, by the other hand, are those systems in which the out-
putted values are transformations over “delayed inputs”, i.e.,

y(ti) =

{
κ if ti < δ

f(x(ti − δ)) if ti ≥ δ

where κ is a constant value defined by the system.
The delay systems, as defined above, introduce the concept of memory to

systems’ formalism, enabling a system to dependent on current and previous
values for computation. Then, the concepts of finite- and infinite-memory
systems are, actually, specializations of delay systems. The difference of these
systems rely on the cardinality of the sets defining the signals: finite-memory
ones may be defined as discrete-time delay systems over finite set of values
while infinite-memory those defined over continuous-time delay systems or
infinite set of values.

The last of categorizations of reactive systems is the causal (or imple-
mentable) ones. Causal systems are those in which two equals inputted
signals are equally transformed, i.e., let S = {ψ | ψ : Time 7→ V alues} be
the set of signals and f : S 7→ S be a causal system; then the if-and-only-if
relation is satisfied: ∀x′, x′′ ∈ S,∀t ∈ Time, if ∀τ ∈ Time, τ ≤ t ⇒ x′(τ) =
x′′(τ), then f(x′)(t) = f(x′′)(z).

Additionally, it is useful to include one more class of (delay) systems: the
feedback systems. In these systems, the input data x(ti+δ) is (composed by)
the output y(ti), as depicted in figure 2.

Feedback systems are always present in control and recurrent systems,
and, hence, very common to arise in the modeling of real-world problems.
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Figure 2: An example of a feedback system.

However, they also present an additional complexity to solve their functional
representation, requiring a fixed point solution.

Electrical Circuits The mathematical formulation of signals and systems
give abstract solutions for signal transformation problem, but does not give
light on how to manipulate, in reality, the physical signals and its proper-
ties: it provides solution without specifying the way an actuator should be
constructed to perform its goal in the physical world.

An electrical circuit, nonetheless, is a mathematical model of physical
electrical circuits in which is easily possible to convert on a real actuator.
Based on a series of electrical components, it provides in a graphical repre-
sentation both the mathematical properties of the system [20, ch. 1, §Circuit
Theory] for its detailed analysis—be it through the simplification of electro-
magnetical theories or graph theory study [3, ch. 2]—as well as the physical
components required for the implementation of the system [20, 24].

The electrical circuits are generally classified in analog and digital de-
pending on the type of input signal they do process. An analog signal is the
one that

is analogous to the physical signal that it represents [...] and
exhibits a continuous variation over its range of activity. [24, p.
11]

If a signal is though as a function (as defined in [11, 9]), an analogous signal

may be defined as fa : R 7→ R ∧ ∀t ∈ R+,∃ dfa
dt

, i.e., the signal is derivable

for a time t ≥ 0.
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By the other side, if the representation of a physical signal is done by a
sequence of uniformly time-spaced (or periodically) values with finite number
of digits characterizing the magnitude of the waveform, it is called a digital
signal [24]. A difference between the two signal can be seen in the figure 3.

The discrepancies between analog and digital circuits go beyond the input
signals and influences the usages and choices of the electrical components
used in the circuit design. Resistors, inductor, capacitor, amplifiers, diodes
and many others are usually apply to build analog electrical circuits [20, 24].
Logic gates, flip-flops and counters are typically used in digital circuits [24,
28].

4 Equivalence Relation Between Metabolic P

Systems, Reactive Systems and Electrical

Circuits

The metabolic P systems have been successfully applied in the modeling of
discrete dynamical systems, oscillatory and periodic patterns and, in par-
ticular, chemical and biological studies. In all these instances, in particular
the latter one, the application of the theory was straightforward given the
Nature-inspired model that is based in and the requirements of the projects—
finding a mathematical model for observed (experimental) behaviours.

However, much of the produced modelings presented signal behaviours
and graphical representations (MP graphs) that resemble electrical circuits
and, in particular as noted by Manca and Marchetti, digital circuits. In par-
allel, inspired by the work on long-term potentiation done by Terje Lømo
[13], an application of the dynamical inverse problem through MP system
(section 2) to the electrical signals of neurological origins, followed by a syn-
thesis of an electrical circuit that could reproduce them, was being thought
by the author.

In fact, the idea of implementing metabolic computing models in hard-
ware is shared among other research groups [21, 6, 8, 19], but with diverse
focus: in general, the idea is to implement a metabolic-based computational
model in hardware, not to find equivalent instances of problems in electrical
circuits; also, they rely strongly on digital composable systems instead of
general electrical circuits.

The current proposal, diversely from the aforementioned efforts, seeks
for a symmetric equivalence relation [12] between metabolic P systems and
reactive systems, more specifically electrical circuits—either analog or digital
ones—in a way it is possible to convert a model described in one of these
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(a) Analog sin(t) signal.

(b) Digital sin(t) signal with T =
π

6
.

(c) Analog versus digital sin(t) signals.

Figure 3: The differences between the analog and digital signals of sin(t).
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(a) MP graph of the Goniometricus system [14, § 3.3.1].

(b) Electric circuit schematic for a sine-cosine oscilator [10].

languages in another, in a lossless way. A similar to the approach for gene
regulatory networks was subject of Marchetti in [16, 18], in which he defines
a table of equivalence among elements of this kind of graphs and the MP
ones.

Suppose the Goniometricus dynamics [14, § 3.3.1], represented by the MP
graph in the figure 4a, where two substances, let us say S and C, oscillates in
accordance to the sine and cosine functions, respectively. Its behaviour may
be reproduced by an equivalent representation in an analog circuit as depicted
in figure 4b, where the A is introduced the sine signal and B outputs the
cosine one. The properties of phase difference between the signals is captured
and the choice of the correct components (a capacitor and inverter) is chosen
to reproduce the correspondent output signal.

Similarly, the same could be applied to digital systems.
For the success of the proposed topic, nonetheless, a structured research

methodology should be applied, prioritizing “low-hanging” results and in-
creasingly evolving the complexity and generalization of the equivalence. In
this sense, the MP system-to-digital circuit equivalence should take immedi-
ate attention given its restricted scope over the analog ones and familiarity
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of the involved ones with the subject.
Hence, the study concerning the digital circuits should rely on the Boolean

circuits [1], software-hardware equivalence [27, 29] and the reduction of the
software simulations from existing tools as MetaPlab [5] and the new MP
Theory Java Library [17] to a small set of instructions that can be also
implemented in hardware, as happens in hardware description languages such
as VHDL.

Conversely, the transformation of MP systems into analogical circuits re-
quires more intensive efforts and studies. Since it is known that systems
and control theory models are converted in (also analogical) hardware, it is
required to understand those transformations and try to import similar ap-
proaches to MP system. Also, deeper studies over analog circuits should be
taken in an attempt to map circuitry components in a series of mathemati-
cal functions (or regressors, in the MP vocabulary), following the successful
examples of conversion between MP graph and genetic signaling network
[16, 18] and algebraic operations and digital circuitry [20].

Along with the aforementioned efforts, the MP-analog circuits transfor-
mation may require an adaptation on some of the MP system internal ma-
chinery seeking for a detachment from its common discrete representation —
useful for computation performed by the standard digital hardware architec-
ture of nowadays computers — to a broader and general one that may include
the analogical operations, approaching the metabolic computing paradigm to
the analog computing [25, 26, 2] one and, hence, providing new perspective
on results and applications of the technique, moving away from limitations
of the system as reduced regresssors dictionaries, fixed-point precision and
errors provided by discretization of continuous domain data.

5 Conclusion

Metabolic P systems has been successfully applied in a range of applica-
tions, specially on the mathematical, chemical and biological fields. As a
result of its effectiveness, partnerships in projects applying the methodology
for experimental data analysis have been increasing, general usage software
modeling tools have been developed and a solid research group around the
subject has been established during.

The study and, later, existence of an equivalence between MP system and
hardware systems would, nonetheless, create a symbiosis between the fields
similarly to the existing software-hardware one, as well it could produce new
applications for both fields. For example, known optimization techniques
for design of schematics could be applied to MP models in an attempt to
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produce simpler MP graphs and models of existing ones, specially those found
by automatic reasoning [17]; in the opposite direction, biological systems
could be expressed in MP formalization and then implemented in a hardware
board (as a FPGA, for example) for experiments reproductivity reasons or
developing “cell-on-a-chip” environments for bioengineering applications [7].

A last but not least important motivation for the search of the trans-
formation lies in the didactic scope. At the moment, the vocabulary and
instructive examples of MP systems relies on chemical, biological and theo-
retical mathematics niches what may work as an obstacle for the realization
from new users coming from other fields of the power of metabolic comput-
ing when applied in a range of problems. Therefore, the interchangeability of
concepts between MP, hardware and control theory models may expose the
latter for a broader audience, eradicating the Babel tower obstacles among
these areas.
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[3] Béla Bollobás. Modern Graph Theory, volume 184. Springer, 1998.

[4] Cristian Sorin Calude and Gheorghe Păun. Bio-steps beyond Turing.
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