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Section 1

Introduction



Once upon a time. . .

Electrical Circuits � Metabolism

or find a bidirectional transformation between electrical circuits and
metabolism.



Once upon a time. . .

Electrical Circuits � Metabolism

Where does the inspiration come from?

Terje Lomø’s long term potentiation [5];

Kidney loops and mechanical engineering [4, p. 75];

Miguel Nicolelis’ experiment with monkeys and virtual arms.



Once upon a time. . .

Electrical Circuits � Metabolism

Is it a sound?

Both are dynamical systems;

Several living-beings components are modeled after
engineering concepts:

Circulatory systems ⇔ fluid mechanics;
Skeleton ⇔ solid mechanics;
Muscular moviment ⇔ electricity;
. . .

Correlated to:

Biomedical engineering;
Systems biology;
Synthetic biology

A just-born research field.



Once upon a time. . .

Electrical Circuits � Metabolism



My intention is. . .

Electrical Circuits ← Metabolism

Get a specification of a metabolism;

Transform it in a specification of an electrical circuit;

Automatically generate an electrical circuit;

Reproduce the metabolic behavior in electrical circuit;

Tune the behavior in the generated electrical circuit.1

Systems Biology.

1Bonus feature.
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Work Breakdown Structure of the PhD research

Electrical Circuits � Metabolism

Get a specification of a ;

Metabolism: Metabolic P system.
Electrical Circuits:

Digital Circuits;
Analog Circuits;
Algorithms.

Transform it in a specification of a ;

Theoretical (core) work of the PhD thesis.

Automatically generate a ;

Practical application of the PhD research.

Reproduce the behavior in ;

Validation of the PhD work.

Tune the behavior in the generated .

Users’s application.



Work Breakdown Structure of the PhD research

Theory

1 How can I represent
metabolism?

2 How can I represent circuit?

3 Can I map every metabolism
to circuit?

4 Can I map every circuit to
metabolism?

5 What is the map procedure?
(Both.)

6 Do I have restrictions?

7 Is the mapping optimal? (In
which sense?)

Practice

1 Instance of a metabolism as
an electrical circuit.

2 Instance of an electrical
circuit as a metabolism.

3 Automatic mapping of
metabolism to electrical
circuit.

4 Automatic mapping of
electrical circuit to
metabolism.



Section 2

Basic Knowledge



Basic Knowledge

To understand the work, it is required to have in mind two
concepts:

1 Metabolic P systems;
2 Computationally Universal Devices.

The rest of the work is self-contained.



Metabolic P systems

Static

G = (M,R, I ,Φ)

set of substances M;

set of rules R;

initial state I ;

set of fluxes Φ.

Dynamic

M = (G , τ, µ, ν)

Metabolic P grammar G ;

Period of the dynamics, τ ;

Number of conventional
mole µ;

Vector of mole masses ν;

Update recurrent equation
(Equational Metabolic
Algorithm).
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Metabolic P systems

Subset of P systems (membrane computing);

Discrete dynamical system;

Deterministic computation;

Very mature as numerical algorithm;

Few theoretical computer science results.

Necessary for PhD hypothesis.
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Very mature as numerical algorithm;

Few theoretical computer science results.

Necessary for PhD hypothesis.



Computationally Universal Devices

Computationally universal devices ⇔ Turing-complete

Recognizes the highest level of the Chomsky-Schützenberger
hierarchy

Grammar Language Automaton
Type-0 Recursively enumerable Turing machine
Type-1 Context-sensitive Linear-bounded non-deterministic Turing machine
Type-2 Context-free Non-deterministic pushdown automaton
Type-3 Regular Finite state automaton

There are several computationally universal models. Register
machine was picked.

Simple;
Easy to reason about;
von Neumann architecture-like;
Low-level programming.



Register Machine

R = (R,O,P) [9]

R is the finite set of registers (with infinite capacity)

O = {INC, DEC, JNZ, HALT} is the finite set of operations;

P = (I1, I2, . . . , In) is the (finite) program.

Instructions are “applied operations” to registers,
instruction-pointer, both or none (HALT);
Restricted to the set of natural numbers.



Register Machine

R = (R,O ′,P)

R is the finite set of registers (with infinite capacity)

O ′ =

Instructions︷ ︸︸ ︷
{INC, DEC, CLR, JMP, JZ, JNZ, HALT}∪

Subprograms︷ ︸︸ ︷
{CPY, ADD, SUB} is

the extended, finite set of operations and subprograms;

P = (I1, I2, . . . , In) is the (finite) program.

Instructions are “applied operations” to registers,
instruction-pointer, both or none (HALT);
Restricted to the set of natural numbers.



Section 3

Theory



Recalling the Guiding Questions

1 Q: How can I represent metabolism?
A: Metabolic P systems.

2 Q: How can I represent circuit?
A: Analog, digital circuits or algorithms.

3 Q: Can I map every metabolism to circuit?

4 Q: Can I map every circuit to metabolism?

5 Q: What is the map procedure? (Both.)

6 Q: Do I have restrictions?

7 Q: Is the mapping optimal? (In which sense?)



Recalling the Guiding Questions

1 Q: How can I represent metabolism?
A: Metabolic P systems.

2 Q: How can I represent circuit?
A: Algorithms.

3 Q: Can I map every metabolism MP system to circuit
algorithm?

4 Q: Can I map every circuit algorithm to metabolism MP
system?

5 Q: What is the map procedure? (Both.)

6 Q: Do I have restrictions?

7 Q: Is the mapping optimal? (In which sense?)



Subsection 1

Algorithms 7→ Metabolic P systems



Algorithms 7→ Metabolic P systems

Q: Can I map every algorithm to MP system?

Algorithm

Representation of register
machine;

Recursively enumerable
language;

Sequential execution;

Self-reference at run time
(e.g. , JNZ);

Operations N 7→ N;
Finite-set of operations.

Metabolic P system

Dynamical system;

Could be context-sensitive
language [1, 8]. More
ambitious attempts [7] has
failed.

Parallel execution;

Reference to previous-state
only;

Operations R 7→ R;
No restriction to usage of
functions.



The Easy Part

Register machine Metabolic P grammar
R = (R,O ′,P) G = (M,R, I ,Φ)

Set of registers R Set of metabolites M

Program (sequence) P
Set of rules R
Set of fluxes Φ

Initial state of the registers Initial state I



Restricting the Operations

Restrict MP systems to N;
Create a new class of MP systems that manage it correctly:
fluxes and rule-application.

Definition (MP+ Grammar)

An MP+ grammar G ′ = (M,R, I ′,Φ′) is a derivation from a standard MP grammar
G = (M,R, I ,Φ) if its vector of initial values for substances I ′ has all components
greater than or equal to zero, the set of consuming fluxes of the metabolite x defined
as Φ′−

x =
{
ϕ′

j : mult−(x , rj ) > 0 , ∀rj ∈ R
}
, and G ′ respects the following

restrictions at every computational step ti :

1 ∀ϕ ∈ Φ : ϕ′(ti ) =

{
ϕ(ti ) , if ϕ(ti ) ≥ 0

0 , otherwise
;

2
∑

ϕ′∈Φ′−
x

ϕ′(ti ) ≤ x(ti ); otherwise ϕ′(ti ) = 0, ∀ϕ′ ∈ Φ′−
x at the execution step ti .



Hidden Members

Sequential execution and self-reference:

For each instruction Ij of program P, there will be a respective
metabolite Ij representing the instruction pointer, active or
not, at that instruction;
For each instruction Ij of the type JZ or JNZ, there will be a
respective metabolite Lj ;
To signalize the halt of operation of the device, there will be a
special (fixed-point) metabolite HALT .



Mapping Rules and Fluxes

Register machine Metabolic P grammar

if Ij is INC(Ri )
Ij → Ij+1 : Ij
∅ → Ri : Ij

if Ij is DEC(Ri )
Ij → Ij+1 : Ij
Ri → ∅ : Ij

if Ij is JNZ(Ri , Ik )

Ij → Lj : Ij
Lj → Ik : Lj − Ij+1

Lj → ∅ : Ij+1

∅ → Ij+1 : Ij − Ri

if Ij is HALT Ij → HALT : Ij

At begining, I1 = 1;

HALT +
∑p

j=1
Ij = 1

0 ≤
∑

Lj∈M
Lj ≤ 1
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Finally, the Theorem

Theorem (Translation of Register Machine to MP+ )

For any register machine R exists an equivalent positively
controlled MP grammar G+.



The Proof I

Given a register machine R = (R, I , P) with |R| = r and |P| = p, a positively controlled MP grammar
G+ = (M, Ru, I ,Φ) is constructed

1 adding a metabolite Ri in the set M for each register Ri ∈ R;

2 adding a metabolite Ij in the set M for each of the instructions in Ij ∈ P;

3 adding a metabolite Lj in the set M for each instruction Ij ∈ P of the type JNZ;

4 adding a HALT metabolite in the set M;

5 defining the initial state of the metabolites Rj equal to the initial values of the registers Rj , the initial
values of all the other metabolites to 0 and the initial value of I1 to 1;

6 adding the rules to Ru and the fluxes to Φ according to the following rules:

1 if Ij is INC or DEC, then Ij → Ij+1 : Ij ;

2 if Ij is INC(Ri), then ∅ → Ri : Ij ;

3 if Ij is DEC(Ri), then Ri → ∅ : Ij ;

4 if Ij is HALT, then Ij → HALT : Ij ;

5 if Ij is JNZ(Ri, Ik), then

1 Ij → Lj : Ij ;

2 Lj → Ik : Lj − Ij+1;

3 Lj → ∅ : Ij+1; and,

4 ∅ → Ij+1 : Ij − Ri .



The Proof II

From the rules above, it is possible to notice that Ij and Lj instructions controls the execution flow of the system
and satisfies

HALT +
∑p

j=1
Ij = 1

0 ≤
∑

Lj∈M
Lj ≤ 1

ensuring no two instructions are executed at the same time, but its execution starts from instruction I1 and
proceeds sequentially (or jumps to another one in case of a satisfying JNZ instruction).
All operations are mappings from and to the N set once both R and G+, by definition, restrict their operations to
this set.

At last, when a rule Ij → HALT is performed, the system is stuck in a fixed point since there is no rules for

“exiting” this state.



The Side-Effect Prize

Result of the transformation is a very simple MP
system—MP+V ;

Not only simple, but equivalent to register machine ⇒
computationally universal;

But MP+V ⊂ MP+ ⊂ MP and MP+V is computationally
universal ⇒ MP is computationally universal!

Definition (MP+V Grammar)

An MP+V grammar G = (M,R, I ,Φ) is a MP+ one in which:

1 ∀r ∈ R and v ′, v ′′ ∈ M, r must have one of the following shapes:

1 ∅ → v ′′;
2 v ′ → ∅; or
3 v ′ → v ′′;

2 ∀ϕ ∈ Φ and m′,m′′ ∈ M, the flux has either the form ϕ = m′ or ϕ = m′ −m′′.



Pre-Print

Figure: arXiv:1505.02420 [3]



Subsection 2

Metabolic P systems 7→ Algorithms



Metabolic P systems 7→ Algorithms

Q: Can I map every algorithm to MP system?

According to previous theorem, yes!

Even using register machines and MP+V , there are some
complications:

1 unordered application of rules
2 parallel application of rules

r ′1 r ′2 · · · r ′n

r1

r2
...
rn

r ′1 r ′2 · · · r ′n

r1

r2
...
rn

t0 t1 t2

Figure: Graphical representation of the block of execution. [2]

3 positivity control
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Metabolic P systems 7→ Algorithms

Q: Can I map every algorithm to MP system?

According to previous theorem, yes!

Even using register machines and MP+V , there are some
complications:

1 application of rules
2 positivity control

Solution 1

Command block and/or Monad



Metabolic P systems 7→ Algorithms

Q: Can I map every algorithm to MP system?

According to previous theorem, yes!

Even using register machines and MP+V , there are some
complications:

1 application of rules
2 positivity control

Solution 2

Inclusion of a subprogram



Runtime of a Computational Step

copy
variable
to its

auxiliaries

compute
fluxes
values

positivity
control

compute
rules

update
variables

positivity control compute rules

ti ti+1

· · ·

· · ·

· · ·

· · ·

Figure: Representation of a computation step MP+V systems (lower
part) and its equivalent register machine (upper part). [2]



Pseudo-code of MP+V 7→ Register Machine

while RHALT = 0 do
for all variable v ∈ M do . copy variables to auxiliaries

Rv ′ ← Rv

end for
for all flux ϕ ∈ Φ do . compute fluxes

Rϕ ← ϕ(ti )
end for
for all variable v ∈ M do . positivity control property

for all flux ϕ−
v ∈ Φ−

v do
Rsum ← Rsum + Rϕ−

v

end for
if Rsum > v then

for all flux ϕ−
v ∈ Φ−

v do
Rϕ−

v
← 0

end for
end if

end for
for all rule r do . compute rules

if r is of the form ∅ → v : ϕ then
Rv ′ ← Rv ′ + ϕ

else if r is of the form v → ∅ : ϕ then
Rv ′ ← Rv ′ − ϕ

else . hence, it must be of the form v1 → v2 : ϕ
Rv ′

1
← Rv ′

1
+ ϕ

Rv ′
2
← Rv ′

2
− ϕ

end if
end for
for all variable v ∈ M do . update variables

Rv ← Rv ′

end for
end while



Rules are Easy. . .

∅ → V1 : ϕ 1 ADD(RV1
,Rϕ,Raux )

2 CPY(Raux ,RV1
)

V1 → ∅ : ϕ 1 SUB(RV1
,Rϕ,Raux )

2 CPY(Raux ,RV1
)

V1 → V2 : ϕ

1 SUB(RV1
,Rϕ,Raux )

2 CPY(Raux ,RV1
)

3 ADD(RV2
,Rϕ,Raux )

4 CPY(Raux ,RV2
)

V1 → HALT : ϕ

1 JNZ(RHALT , 3)
2 JMP(4)
3 HALT

4 SUB(RV1
,Rϕ,Raux )

5 CPY(Raux ,RV1
)

6 ADD(RHALT ,Rϕ,Raux )
7 CPY(Raux ,RHALT )



. . . The Surroundings Aren’t!

There to ensure the proper/correct execution;

Hidden dynamics of the system;

80% of the process, most of the generated source code;

Processes:

1 Copy variables values to auxiliaries registers;
2 Compute fluxes values for current computational step;
3 Perform positivity control on every rule;
4 Update the variables values with computed ones;
5 Loop the systems up to fixed-point HALT 6= 0.



The Easy Ones...

Copy variables values to
auxiliaries registers 1 CPY(RV ,RVaux )

Compute fluxes values for current
computational step

if ϕ = V then
1 CPY(RV ,Rϕ)

else . Hence, ϕ = V1 − V2

1 SUB(RV1 ,RV2 ,Rϕ)
end if

Update the variables values with
computed ones 1 CPY(RVaux ,RV )



. . . But MP+ Is Hard!

Two contrains to satisfy:
1 Fluxes must always belong to the set of positive number;

ϕ
′(ti ) =

{
ϕ(ti ) , if ϕ(ti ) ≥ 0

0 , otherwise

2 Sum of all consuming fluxes for a given variable must be
smaller or equal to the amount of the variable

∑
ϕ′∈Φ′−

x

ϕ
′(ti ) ≤ x
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. . . But MP+ Is Hard!

∑
ϕ′∈Φ′−

x

ϕ′(ti ) ≤ x



Another Theorem

Theorem (Translation of MP+V to Register Machine)

For any MP+V grammarM+ exists an equivalent register machine
R.

Corollary

For any computable MP grammarM exists an equivalent register
machine R.



CMC16

Figure: Presented at 16th Conference on Membrane Computing
(CMC16) [3].



Recalling the Guiding Questions

1 Q: How can I represent metabolism?

A: Metabolic P systems.

2 Q: How can I represent circuit?

A: Algorithms.

3 Q: Can I map every MP system to algorithm?

A: Yes, since they are computable.

4 Q: Can I map every algorithm to MP system?

A: Yes.

5 Q: What is the map procedure? (Both.)

A: Proof of theorems.

6 Q: Do I have restrictions?

A: Yes: MP must be computable.

7 Q: Is the mapping optimal? (In which sense?)

A: Yes: MP+V is a minimalist set.



Section 4

Practical Applications



Guiding Goals

1 Instance of a metabolism as an electrical circuit.

2 Instance of an electrical circuit as a metabolism.

3 Automatic mapping of metabolism to electrical circuit.

4 Automatic mapping of electrical circuit to metabolism.



Subsection 1

Bidirectional Compiler



Compiler ≡ Automatic Translation

Bidirectional compiler:

1 Register machine 7→ MP+V ;
2 MP+V 7→ register machine.

Available in three flavors:

1 Library;
2 Standalone command-line application;
3 Standalone web interface.

≈ 100% coded in Haskell;

34 files, 1802 lines-of-code;
Except few Javascript, CSS and HTML code for web interface.



Compiler ≡ Automatic Translation

Figure: Relation among modules in the compiler.



Compiler ≡ Automatic Translation

Figure: Relation among modules in the compiler.



Compiler ≡ Automatic Translation

Live-Action!



Subsection 2

Digital Circuit



VHDL Hardware Implementation

MP system 7→ VHDL 7→ FPGA;

VHDL is algorithmic representation of the digital circuit;
FPGA is the digital circuit per se.

Derived from a general framework discovered;

100% done at Vilniaus Gediminos Technikos Universitetas
when in Erasmus Plus ;

They are starting a team on the field with a PhD student.



VHDL Hardware Implementation



VHDL Hardware Implementation



Subsection 3

Discrete Fourier Transform



MP-DFT

Discrete Fourier transform using MP power to:

1 generate periodic signals (here, sine and cosine);
2 numeric regression (LGSS).

Frenquencies:

In a fixed-range;
Dynamically computed using τ of MP and Nyquist frequency.

Benchmark:

Accuracy is better than MATLAB/FFTW;
Speed is not so promising, one order of magnitude slower;
MATLAB + JVM vs. native divide-and-conquer code.



MP-DFT



Recalling Guiding Goals

1 Instance of a MP system as an electrical circuit and
algorithm.

2 Instance of an algorithm as a MP system.

3 Automatic mapping of MP system to algorithm.

4 Automatic mapping of algorithm to MP system.



Section 5

Conclusions



Conclusions

MP is more sound, theoretically speaking;

Computationally universal, solving past pendencies [6, 7];
Minimalistic subclass MP+V .

Definition of translation procedures in both-ways.

Practical examples, hardware and software.

Open-field for new studies, such as optimization (of
translation) and super-computation (using MP+V ).



Thank you!

Obrigado!

Grazie!

Ačiū!



Bibliography I

Alberto Castellini, Giuditta Franco, and Vincenzo Manca.
Hybrid functional Petri nets as MP systems.
Natural Computing, 9:61–81, 2010.

Ricardo Henrique Gracini Guiraldelli and Vin Manca.

Automatic translation of MP+V systems to register machines.
In G. Rozenberg, A. Salomaa, J. Sempere, and C. Zandron, editors, Sixteenth
Conference on Membrane Computing (CMC16), Lecture Notes in Computer
Science. Springer, 2015.
To appear.

Ricardo Henrique Gracini Guiraldelli and Vincenzo Manca.
The computational universality of metabolic computing.
Available as pre-print at http://arxiv.org/abs/1505.02420, 2015.

Frans Johansson.
The Medici effect: what elephants & epidemics can teach us about innovation.
Harvard Business Review Press, 2006.

Terje Lømo.
The discovery of long-term potentiation.
Philosophical transactions of the Royal Society of London. Series B, Biological
sciences, 358(1432):617–20, April 2003.

http://arxiv.org/abs/1505.02420


Bibliography II

Vincenzo Manca, Luca Bianco, and Federico Fontana.
Evolution and oscillation in P systems: Applications to biological phenomena.
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