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Abstract. The purpose of this work is to show the strong connection
between learning in the limit and the second-order adaptive automaton.
The connection is established using the mutating programs approach,
in which any hypothesis can be used to start a learning process, and
produces a correct final model following a step-by-step transformation
of that hypothesis by a second-order adaptive automaton. Second-order
adaptive automaton learner will be proved to acts as a learning in the
limit one1.
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1 Introduction

Ray Solomonoff was the father of the general theory of inductive inference [11], a
fruitful area of study that generated many developments in artificial intelligence
[5,13]. In short, the goal of inductive inference is to identify the unknown object
by picking out one of a (typically infinite) set of hypothesis for this object [1]. The
hypothesis is a finite representation of the object and may be consistent with the
given incrementally growing segments of object example inputs. It is possible to
define many ways to the hypothesis choice and each one, in practice, determines
a whole new learning model; the main ones are the probabilistic approach [5,13]
and the enumerations strategies [4]. But, as pointed out by Wallace, Dowe and
Solomonoff himself, the so-called “Solomonoff Induction” is actually prediction
[13,2,12], rather than induction. Therefore, the approach used in this work is
closely related to Wallace’s Minimum Message Length (MML) approach, but
was inspired by Solomonoff’s paper [11].

Thus, consider the following constraint: what if the only way to generate a
new hypothesis was by “recycling” a former one? What would the behavior of
the learner be if the generation of a new hypothesis implies the transformation
of an older one? What kind of transformation would be necessary?

1 The work reported here received support through FAPESP grant 2010/09586-0.
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This kind of hypothesis needs to be a “changeable” one to be reused, that is,
it would have a “plasticity” feature to adapt to new inputs for which it is not
prepared; therefore, the changes must happen in the representation structure
used to describe the hypothesis. Using a biological metaphor, the hypothesis
must have the mutational property, with the learner having the responsibility
to apply transformations in the hypothesis. The use of this kind of metaphor,
nonetheless, is not new: Solomonoff was also interested in the study of mutating
programs [6]. Now, this work proposes a mutational computational model, called
second-order adaptive automaton, aimed at the problem of inductive inference
and in which this “changeable” behavior is an essential property of the model
itself.

A successful mutation means that the learner has adapted to the new in-
puts. The fact that learning can be represented by an adaptive process is the
fundamental premise of this work. The last two decades presented the develop-
ment and emergence of new computational models that deviate from a basis on
mechanical machines structures and become similar to evolutive, collaborative
and biologically inspired models; among these, self-modifying devices [8,10] are
prominent ones, which have been developed under a formalism based on au-
tomata theory and is one of the basis to represent the adaptive behavior of the
model defined here.

The description of the inductive inference under an adaptive aspect will be
made using the Emil Mark Gold learning in the limit model [3], also called identi-
fication in the limit. Responsible for branch of inductive inference, Gold studied
the learning problem for recursive functions and formal languages. In his model,
the inductive inference is an infinite process; a learner identifies a language if the
generation of hypotheses converges to one and no other changes occur, although
new inputs of the language are presented to the learner indefinitely.

The text is organized as follows: section 2 describes the notation and technical
preliminaries concerning automata theory and first-order adaptive automata,
basis for the second-order adaptive automata; section 3 presents the the second-
order adaptive automata. Section 4 shows the relationship between second-order
adaptive automata and learning in the limit. Finally, section 5 presents the
conclusion and further works to be developed.

2 The First-Order Adaptive Automaton

Adaptive automaton belongs to the category of self-modifying devices. It is
a computational model equivalent to Turing Machine [7] and has the non-
deterministic finite state automaton as formulation basis. Its major characteristic
is the ability to decide how to modify its own structure in response to some exter-
nal input, without the interference of any external agent. The first appearance of
the adaptive automata has some inconsistencies in its description, but this fact
was corrected later in a complete formalization, performed using the automata
transformations concept [10]. This formalization, developed in the present sec-
tion, is known as first-order adaptive automata (FOAA). However, some
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introductory concepts are presented before for unequivocal understanding of the
FOAA definition.

2.1 Notations and Technical Preliminaries

The main concepts used in this work, mostly concerning automata theory, as
well the pertinent notation, are summarized in table 1.

N = {0, 1, 2, . . . } The set of natural numbers
I = {i0, i1, . . . , im} Finite arbitrary indexed set
rem(I, x) = {I − {x} : x ∈ I} with (x /∈ I) Removal function
ins(I, x) = {i0, i1, . . . , im+1} with im+1 = x Insertion function
Σ An alphabet of symbols
α ∈ Σ A symbol of the alphabet
L ⊆ Σ∗ A language over Σ
t ∈ L A string of L
ε An empty string
θ = (t0, t1, ...), with tk ∈ L for k ∈ N A text of L
θ[n] = (t1, t2, ...tn), with tk ∈ L for 0 ≤ k ≤ n the n-initial segment of θ
seq(θ) the family of all segments
M0 = (Q, q0, E,Σ, ∂) A non-deterministic automaton
Q = {q1, . . . , qn} The set of states of M0

q0 ∈ Q The initial state of M0

E ⊆ Q The accepting states set of M0

∂ ⊆ Q× {Σ ∪ {ε}} ×Q The state transition relation
∂ = {δ1, δ2, . . . , δi} The transitions set of M0

δ = (q′, α, q′′) with {q′, q′′} ⊆ Q and α ∈ Σ A transition of M0

(q′, t) ∈ Q×Σ∗ with q′ ∈ Q A configuration of M0

(q0, t) The initial configuration of M0

Table 1. Notation for technical preliminaries related to the automata theory.

A scalar hierarchical structure[9] is indicated by 〈an 〈an−1 . . . 〈a1 〈a0〉〉〉〉,
and is interpreted as follows: if ai+1 is a formal system defined by an ordered
n-tuple, then ai is a n-tuple element, for 0 ≤ i ≤ (n− 1).

2.2 Automata transformations

Given the non-numerical set M 0 of all non-deterministic finite state automaton
under an alphabet Σ, for any element M0 ∈M 0 and the state transition relation
∂ of M0, a proper transition is defined as:

δpro = δ : δ ∈ ∂ (1)

Otherwise, a foreign transition is defined as:
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δfor = δ : δ /∈ ∂ (2)

A sequence of proper transitions belong to M0 and represented by

λpro = (δpro1 , . . . , δprom) (3)

is called a positive sequence. In turn, a transitions sequence

λfor = (δfor1 , . . . , δforn) (4)

of foreign transition for M0 is called a negative sequence.

Given a negative and a positive sequence for an automaton M0, the sequence:

φ = (λfor, λpro) (5)

is defined as a first-order transformation pair.

Employing the proper and foreign transition concepts, as well the definition
of removal and insertion functions, it is possible to define transformation func-
tions for all members of M 0. Thus, the δ-removal operation and δ-insertion
operation are defined, respectively, by:

f−k M
0 = f−(δprok ,M

0) = (Q, q0, E,Σ, rem(∂, δprok)) (6)

f+k M
0 = f+(δfork ,M

0) = (ins(ins(Q, q′), q′′), q0, E,Σ, ins(∂, δfork)) (7)

with δprok ∈ λpro and δfork ∈ λfor.
Now, using this two operators, it is possible to introduce the concept of

first-order adaptive function:

FφM0 , F(φ,M0) = F−λproF
+
λfor

M0 (8)

in which

F−λproM
0 , F−(λpro,M

0) = (f−m ◦ f−m−1 ◦ . . . ◦ f
−
2 ◦ f

−
1 )M0 (9)

F+
λfor

M0 , F+(λfor,M
0) = (f+n ◦ f+n−1 ◦ . . . ◦ f

+
2 ◦ f

+
1 )M0 (10)

are the first-order removal transformation and first-order insertion trans-
formation.
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Definition 1 (First-order Adaptive Automata) A First-Order Adaptive Au-
tomata (FOAA) is the quadruple M1 = (M0, Φ, φ∅, ∂1), in which M0 ∈ M 0 is
called first-order subjacent device. Set Φ of the first-order transformation
pairs is called adaptive behavior set. The element φ∅ ∈ Φ is a void transfor-
mation pair called null behavior. Set ∂1 is the first-order adaptive transi-
tion relation. Each element of ∂1 takes the form δ1i,k = (δi, 〈M1〈FφkM0〉〉), for
φk ∈ Φ and δi ∈ ∂ in which ∂ is the first-order subjacent device state-transition
relation.

Any extension of the automaton concept implies a new expression for it.
Hence, the traditional elements of the automata theory (step function, etc.)
were brought into the FOAA model.

The one step function shows how the FOAA changes from one configura-
tion to another:

(q′, t) `[FφkM0] (q′′, w)⇔ ∃α ∈ Σ : αw = t (11)

in which q′′ is a state of FφkM0 and ((q′, α, q′′), 〈M1〈Fφk(M0)〉〉) ∈ ∂1 for φk ∈ Φ.
The closure of the one step function for a FOAA is defined as:

(q′, t) `∗[Fφkj ...Fφk2 Fφk1M0] (q′′, w) (12)

iff (q′ = q′′) and (w = t) or rules 1, 2 and 3 are all satisfied as defined below:

1. t = a0a1 . . . ajw with ai ∈ Σ for 0 ≤ i ≤ j
2. ∃(φk1 , φk2 , . . . φkj+1) with φki ∈ Φ for 1 ≤ i ≤ j
3. ∃ p1, p2 . . . pj ∈ Q in which Q belongs to first-order subjacent device, such

that,
for j ∈ N:

(q′, t) `[Fφk1M0] (p1, a1a2a3 . . . ajw)

`[Fφk2 Fφk1M0] (p2, a2a3 . . . ajw) `[Fφk3 Fφk2 Fφk1M0] . . .

`[Fφkj ...Fφk2 Fφk1M0] (pj , ajw)

`[Fφkj+1
Fφkj ...Fφk2 Fφk1M

0] (q′′, w)

The language recognized by the FOAA is

L(M1) = {t : (q0, t) `∗[Fφkj ...Fφk2 Fφk1M0] (qf , ε)} (13)

Special case in which the behavior set is Φ = {φ∅}, the necessary condition
for a string to be accepted by a FOAA assuming the form:

(q0, t) `∗[F
φ∅ ...Fφ∅Fφ∅M0] (qf , ε) = (q0, w) `∗M0 (qf , ε)
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3 The Second-Order Adaptive Automaton

Now, taking the set M 1 of all first-order adaptive automataM1 = (M0, Φ, φ∅, ∂1)
for a fixed Σ and applying the same method used for the set M 0 (the definition
of basic insertion and removal operations for FOAAs transitions), analogous to
what occurred in the previous section, it is possible to obtain similar concepts,
now to study the first-order adaptive automata set features under a set of opera-
tors. Therefore, the table below summarizes these concepts and their definitions:

δ1pro = δ1 : δ1 ∈ ∂1 δ1-proper transition
δ1for = δ1 : δ1 /∈ ∂1 δ1-foreign transition
λ1
pro = (δ1pro1 , . . . , δ

1
prom) δ1-positive sequence

λ1
for = (δ1for1 , . . . , δ

1
form) δ1-negative sequence

ψ , (λ1
for, λ

1
pro) δ1-transformation pair

g−k M
1 = g−(δ1prok ,M

1) = (M0, Φ, φ∅, rem(∂1, δ1)) δ1-removal operation

g+k M
1 = g+(δ1fork ,M

1) = (M0, ins(Φ, φ), φ∅, ins(∂1, δ1)) δ1-insertion operation
Table 2. Set of operations that structures the SOAA.

The second-order adaptive function is the operator

Gψ , G(ψ,M1) = G−λ1
pro
G+
λ1
for
M1 (14)

in which

G−λ1
pro
M1 , G−(λ1pro,M

1) = (g−m ◦ g−m−1 ◦ . . . ◦ g
−
2 ◦ g

−
1 )M1 (15)

G+
λ1
for
M1 , G+(λ1for,M

1) = (g+n ◦ g+n−1 ◦ . . . ◦ g
+
2 ◦ g

+
1 )M1 (16)

are the second-order removal transformation and second-order insertion
transformation, respectively. Similar with the first-order case, the pair ψ∅ is
called of void second-order characteristic pair. Thus, for an empty second-order
characteristic pair, Gψ∅M1, it is equal to M1.

Definition 2 (Second-Order Adaptive Automata) A Second-Order Adap-
tive Automata (SOAA) is the quadruple M2 = (M1, Ψ, ψ0, ∂

2), in which M1 ∈
M 1 is called second-order subjacent device. The set Ψ = {ψ0, ψ1, . . . , ψn}
of second-order transformation pairs is called second-order adaptive behav-
ior set. The element ψ0 is a void transformation pair called null behavior.
In the second-order adaptive transition relation ∂2, each element take the
form δ2i,k,j = (δ1i,k, 〈M2〈GψjM1〉〉), for ψj ∈ Ψ and δ1i,k ∈ ∂1, in which ∂1 is the
second-order subjacent device state-transition relation.

The one step function shows how the SOAA changes from one configura-
tion to another and is defined below:
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(q′, t) `[〈GψjM1〈FφkM0〉〉] (q′′, w)⇔ ∃α ∈ Σ : αw = t (17)

in which q′′ is a state of FφkM0 for δi,k,j = (δi,k, 〈M2〈GψjM1〉〉) ∈ ∂2, δi,k =
(δi, 〈M1〈FφkM0〉〉) ∈ ∂1 and δi = (q′, α, q′′) ∈ ∂ with φk ∈ Φ and ψj ∈ Ψ .

For any s ∈ N, the closure of the one step function for a SOAA is
defined as:

(q′, t) `∗[〈Gψjs ...Gψj2 Gψj1M1〈Fφks ...Fφk2 Fφk1M
0〉〉] (q′′, w) (18)

iff (q′ = q′′) and (w = t) or rules 1 to 4 are all satisfied as defined below:

1. t = a0a1 . . . asw with az ∈ Σ for 0 ≤ z ≤ s
2. ∃(φk1 , φk2 , . . . φks+1

) with φkz ∈ Φ for 1 ≤ z ≤ s
3. ∃(ψj1 , ψj2 , . . . ψjs+1) with ψjz ∈ Ψ for 1 ≤ z ≤ s
4. ∃ p1, p2 . . . ps ∈ Q with Q belongs to First-order subjacent device such that:

(q′, t) `[〈Gψj1M1〈Fφk1M
0〉〉] (p1, a1a2a3 . . . asw)

`[〈Gψj2 Gψj1M1〈Fφk2 Fφk1M
0〉] (p2, a2a3 . . . asw)

`[〈Gψj3 Gψj2 Gψj1 〈Fφk3 Fφk2 Fφk1M0〉〉] . . .

`[〈Gψjs ...Gψj2Gψj1M1〈Fφks ...Fφk2 Fφk1M
0〉〉] (ps, asw)

`[〈Gψjs+1
Gψjs ...Gψj2Gψj1M

1〈Fφks+1
Fφks ...Fφk2 Fφk1M

0〉〉] (q′′, w)

The language recognized by the SOAA is:

L(M2) = {t : (q0, t) `∗[〈Gψjs ...Gψj2 Gψj1M1〈Fφkj ...Fφk2 Fφk1M
0〉〉] (qf , ε)} (19)

In the special case in which the second-order behavior set is Ψ = {ψ∅}, the
necessary condition for a string to be accepted by a SOAA assumes the form:

(q0, t) `∗[〈G
ψ∅ ...Gψ∅Gψ∅M1〈Fφkj ...Fφk2 Fφk1M

0〉〉] (qf , ε) =

(q0, t) `∗[Fφkj ...Fφk2 Fφk1M0] (qf , ε)

In this case, the recognition of string t is made by the initial second-order
subjacent device. The SOAA assumes the behavior of the FOAA, which is equiv-
alent to the Turing Machine.

4 Second-Order Adaptive Automata and Learning in the
Limit

This section will show the advantage of using the SOAA as an identification
in the limit Inductive Inference Machine for formal languages. By definition,
SOAA transforms FOAAs by applying on them second-order adaptive actions.
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Now, it is necessary to demonstrate how this behavior can be used to “recycle”
the former hypothesis created in a learning in the limit process, as stated in the
Introduction, and what kind of formal languages a SOAA can learn in the limit.
Firstly, the main definitions related to the Gold identification in the limit are
presented. Then, an illustrating example of learning in the limit using a SOAA
is presented in subsection 4.1.

Definition 3 (Inductive Inference Machine) Let a target formal language
indexable class L and a hypothesis set H composed by an useful enumerable
formal model class (grammars, Turing machines, recursive functions, etc) to
represent the members of the target languages class. Given the family seq(θ) for
θ ∈ text(L), in which L belongs to L, an inductive inference machine (IIM in
short) is defined as an effective procedure in which it computes any partial or
total mapping IIM ⊆ seq(θ)×H.

The IIM changes its mind if two consecutives output hypotheses are dif-
ferent, i.e., IIM(θ[m]) 6= IIM(θ[m+ 1]) for m ≥ 0.

The expression

IIM(θ) ↓= h⇔ ∃(n ∈ N)∃(h ∈ H)(∀m ≥ n)[IIM(θ[m])] = h (20)

means that the inductive inference machine converges, i.e., the potential infinite
sequence [IIM(θ[m])]m∈N of outputs converges on θ to h ∈ H.

Definition 4 (Identification in the Limit) Let L be an indexed family of
languages, given a convenient hypothesis space H. IIM Lim-identifies L ⇔
∀(L ∈ L)∃(h ∈ H : L(h) = L)[IIM(θ) ↓= h].

The second-order adaptive function concept allows deriving definitions of
language classes based only on the SOAA characteristics. One of these classes is
shown below.

Definition 5 (Confined Adaptive Problem) Given a FOAA M1 and a lan-
guage L in which L 6= L(M1), let C∝ = (Gψi , . . . ,Gψj , . . . ,Gψk) be a sequence
of second-order adaptive functions. If the language L can be expressed in terms
of M1 and C∝ as follows in equation 21:

L = L((Gψi . . . (Gψj . . . (Gψk(M1)) . . . ) . . . )) (21)

then L is called a confined adaptive problem, sequence C∝ is called meta-
morphosis sequence and M1 is a seed for L.

Definition 6 (Linear Confined Adaptive Problem Class)
Given a finite second-order adaptive functions set G, let the indexable class

LG = {Ln}n∈N of confined adaptive problems, all based on the same seed L0,
in which the metamorphosis of Li is a subsequence of the Li+1 metamorphosis.
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For all languages Li ∈ LG, if all elements of the sequence C∝i , belongs to Li,
are elements of CG, then LG is called a Linear Confined Adaptive Problem
Class and set G is called a mutation set.

Theorem 1 Given a Confined Adaptive Problem L and any text θ of L, there
is a SOAA M2 and a Natural number n > 0, for which:{

L 6= L(M2) for θ[n]

L = L(M2) for θ[n+ 1]

Proof (by construction). Take a SOAA in which its subjacent device M1 is a
seed for a Confined Adaptive Problem L. Let Ψ be a behavior set in which all el-
ements of C∝ are elements of Ψ , too. With the valid seed M1 for L, it is possible
to define a second-order adaptive transition relation in which the computation
of text θ assumes the form:

(q0, t1) `∗[〈Gψjs ...Gψj2 Gψj1M1〉] (q′, w′)

(q0, t2) `∗[〈Gψjt ...Gψj2Gψj1 (M1)′〉] (q′′, w′′)
. . .
(q0, tn−1) `∗

[〈Gψju ...Gψj2Gψj1 (M
1)(n−2)〉] (qn−1, wn−1)

(q0, tn) `∗
[〈Gψjw ...Gψj2 Gψj1 (M

1)(n−1)〉] (qn, wn)

(q0, tn+1) `∗[〈Gψjp ...Gψj2 Gψj1 (M1)n〉] (qf , ε)

(q0, tn+2) `∗
[〈Gψjv ...Gψj2Gψj1 (M

1)(n+1)〉] (qf , ε)
. . .
(q0, tn+k) `∗

[〈Gψjl ...Gψj2Gψj1 (M
1)(n+(k−1))〉] (qf , ε)

for q′, q′′, . . . , qn−1, qn different from qf ; w′, w′′, . . . , wn−1, wn different from
ε and

(M1)′ = Gψjs . . .Gψj2Gψj1M
1

(M1)′′ = Gψjt . . .Gψj2Gψj1 (M1)′

. . .
(M1)n−1 = Gψju . . .Gψj2Gψj1 (M1)n−2

(M1)n = Gψjw . . .Gψj2Gψj1 (M1)n−1

(M1)n+1 = Gψjp . . .Gψj2Gψj1 (M1)n

. . .

such that the execution of adaptive transitions generates the sequence of the
adaptive transformations below

L = L(Gψjp . . .Gψjw . . .Gψju . . .Gψjt . . .Gψjs . . .Gψj2Gψj1M
1)
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and, for any tn+k in which k > 1, the following expression holds

(M1)(n+(k−1)) = (M1)(n+1)

Thus, for n > 0, there is a SOAA for the Confined Adaptive Problem such
that{

L 6= L(M2) for (t1, t2, . . . , tn)

L = L(M2) for (tn+1, . . . )

ut

Theorem 2 For m ∈ N, and given a function P(M2, θ[m]) = M1 that returns
M1, which is the subjacent device FOAA of the second-order M2, then after
processing the segment text θ[m], there is a SOAA M2 in which the function
P(M2, .) is an IIM and P Lim-identifies any language Li of LC∝ , for any
text θ belonging to Li.

Proof. As seen in theorem 1, for any Confined Adaptive Problem L, it is possible
to construct a SOAA M2 such that:{

L 6= L(M2) for θ[n]

L = L(M2) for θ[n+ 1]

Thus, it is possible to claim that

∃(n ∈ N)∃(M1 ∈M 1 : L(M1) = L)(∀m ≥ n)[P(M2, θ[m]) = M1]

in other words,

∃(M1 ∈M 1 : L(M1) = L)[P(M2, θ[m]) ↓= M1]

meaning that the function P(M2, .) Lim-identifies L.
According to definition 6, the metamorphosis sequence of any Li (with i ≥ 0)

of LC∝ is a subsequence of the metamorphosis sequence of Lz, with z ≥ i. Thus,
using theorem 2, the following assertions holds:

for L0 ∃(P(M2
0 , .) : P(M2

0 , .) Lim-identifies (L0)
for L1 ∃(P(M2

1 , .) : P(M2
1 , .) Lim-identifies (L0, L1)

for L2 ∃(P(M2
2 , .) : P(M2

2 , .) Lim-identifies (L0, L1, L2)
. . .
for Li ∃(P(M2

i , .) : P(M2
i , .) Lim-identifies (L0, L1, L2, . . . , Li)

. . .
for Ln ∃(P(M2

n, .) : P(M2
n, .) Lim-identifies LC∝

ut
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An important consequence of Theorem 2 has an immediate impact on the
choice relation over the hypotheses space.

Corollary 1 Set M 1 is an admissible hypotheses space.

4.1 Illustrating example

Let Σ = {a, b, c} be an alphabet, and t = abc a string over Σ∗. Based on the
string t, it is possible to define the class of formal languages below:

I = {L0 = anbnc, L1 = anbcn, L2 = abncn}

Now, consider the following situation: there is a text θ that belongs to an
unknown language X. The only information about language X is the fact that
it belongs to class I. The question is: would it be possible to obtain a SOAA
that identifies the language X represented by sequence θ? If I is a Confined
Adaptive Problem Class, then the response is yes. Thus, to answer the question,
it is necessary to verify whether I is a Confined Adaptive Problem Class or not.

Proof (I is a Confined Adaptive Problem Class).
The proof that I is a Confined Adaptive Problem Class is lengthy. For space

limitation reasons, only the proof sketch will be given here. All elements of I can
surely be represented by FOAAs. Let M1

0 represents the FOAA for the language
L0 of I. One possible adaptive function F0 for this FOAA is “for a number n of
symbols ‘a’ recognized, transform the M0 to accept the same number of symbols
‘b’ in the string”.

The next step is to verify that all language members of I are Confined Adap-
tive Problems. Thus, it is necessary to verify if there are metamorphosis se-
quences for L1 and L2. If there are such metamorphosis sequences, then the first
sequence is

C∝2
= (G2,G1)

and it performs the transformation sequence below:

L2 = L((G2(G1(M1
0 ))))

in which the two second-order adaptive functions G2 and G2 must have the
following characteristics:

– G1: Replace the second symbol of F0 with the symbol ‘c’ and transform F0

in F1.
– G2: Replace the first symbol of F1 with the symbol ‘b’ and transform F1 in

F2.
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And the second sequence is

C∝1
= (G1)

that performs the transformation sequence below:

L1 = L(G1(M1
0 ))

But sequence C∝1 is a subsequence of C∝2 and generates the language L1.
Considering that the second-order adaptive functions set used to create the trans-
formation sequences is finite, then it is a mutation set. Thus, I is a Confined
Adaptive Problem.

ut

5 Conclusion

As stated in the Introduction it is possible to define many ways to the hypothesis
choice and each one, in practice, determines a whole new learning model; the
main ones are the probabilistic approach and the enumerations strategies. The
approach used in this work is closely related to Wallace’s Minimum Message
Length (MML) approach, but was inspired by Solomonoff’s paper [11].

A strong connection between learning in the limit and the SOAA was shown
by Theorems 1 and 2. The connection is established using Solomonoff’s approach
to mutating programs. The purpose is to represent a learning process using the
SOAA, and this learner acts as a learning in the limit one. Thus, from this point
of view, any hypothesis can be used to start a learning process, and, following a
step-by-step transformation of that hypothesis by a SOAA, produces a correct
final model, when computational learning can be effective.

Hence, inductive inference can be envisioned in a new and different way using
this kind of learner. The SOAA can be used as a learner for formal languages,
as illustrated by the example in section 4.1. There are many applications for the
learning process defined in this paper; one clearly comes from on-line learning.
Since it is a non-stop process, it is suitable for continuous learning, and as the
previous hypothesis can be used to produce new ones, the second-order adaptive
automaton seems to be an appropriate choice for diverse environments.

5.1 Future work

As a future work, some of the applications mentioned here will be implemented,
to run them in order to generate a benchmark comparing the second-order adap-
tive approach to some others. A lot of work need to be done before a product
ready to be used can be generated, but the path to be followed has been estab-
lished.
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It is necessary to define all the limitations of the computational model and
then define the learning limitations of this adaptive learning process. Some con-
straints and limits of the adaptive automata hierarchy have to be formally de-
fined. For the purposes of this work, the second-order was sufficient. Another
task to be carried out is investigate the necessity of third or higher order.
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1. Nick Chater and Paul Vitányi. “Ideal learning” of natural language: positive re-
sults about learning from positive evidence. Journal of Mathematical Psychology,
51(3):135–163, 2007.

2. D. L. Dowe. Handbook of the Philosophy of Science - (HPS Volume 7) Philosophy
of Statistics, chapter MML, hybrid Bayesian network graphical models, statistical
consistency, invariance and uniqueness, pages 901–982. Elsevier, 2011.

3. E. Gold. Language identification in the limit. Information and Control, 10(5):447–
474, 1967.
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Adaptativo, Limites e Complexidade em Comparação com Máquina de Turing. In
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