
Automatic Translation of MP+V Systems to

Register Machines

Ricardo Henrique Gracini Guiraldelli and Vincenzo Manca

University of Verona.
Strada Le Grazie, 15, 37134, Verona, Italy.

{ricardo.guiraldelli, vincenzo.manca}@univr.it

Abstract. The present work proposes a translation of MP systems into
register machines. The already proved universality of MP grammars [6]
results here in minimal terms by means of a suitable subclass of these
grammars. This minimality suggests a specification of the metabolic com-
putational paradigm of MP grammars at low (register) level, which is a
first step toward a circuit-based implementation of these systems.

1 Introduction

Metabolic P (MP) systems have been evolving since its conception from a mod-
elling language for biological systems using the nature inspired P system [11] to
a computational framework for diverse mathematical activities, such as arith-
metical operations [10, Section 3.8.1] or regression of temporal series [13]. Con-
sequently, questions concerning the computational power of MP systems have
driven the research to some correspondent models [3, 12] without a complete
equivalence to Turing machines or more powerful devices [5, 19].

From the synthetic and systems biology perspective, on the other hand, there
is a rise on the number of methods seeking to import to those fields already estab-
lished methodologies in engineering, in a kind of computer-aided biology. Com-
ponent modelling [17], hardware design [7, 16] and compiler techniques [1] are
some of them. Although well-intentioned, these suggestions are reinterpretations
of engineering practices and fail to communicate in a biological well-understood
language.

Trying to unify both standpoints (discrete metabolic computing framework
and formal design of systems and synthetic biology), the present work closes the
cycle (started with [6]) of MP system as a universal computational model of
discrete and deterministic metabolic computing, providing the means to convert
a rule based system coded as a particular MP system (Definition 9) into an
equivalent register machine description as well as formally describe the core
algorithms implemented in our compiler software under development1; hence,

1 The current version of the software (command-line application) may be downloaded
at http://ricardo.guiraldelli.com/resources/software/compiler/regtomp.

zip. In near future, a web version of it will be also available.

a bidirectional bridge between computational and mathematical modelling and
chemical and biological worlds is built and, as a consequence, also a base to
develop new tools that connect them.

To introduce our mechanism of translation between models, the present paper
is divided as follows: Section 2 introduces the concept of register machine and
specifies the one used as target modelling language in the text; then, there is a
review on classical MP systems followed by the presentation of the MP+ class of
systems, our reference model. Section 4 scrutinize the details of the translation
between MP+V systems and register machine. Finally, we make final remarks
on the Section 5.

2 Register Machine

The literature enumerates several Turing-powerful models of computation [9,
Chapter 4], each one suitable for different context and applications given their
own particularities. For the case in which the circumstance requires a great
proximity to the bare-metal real computers, the register machine is one the
most convenient models to be used.

A register machine is defined by a finite set R of registers, a finite set O of
operations over the registers and a program P , an indexed sequence of applied
operations. Each of the registers r ∈ R has infinite capacity, storing numbers of
arbitrary length and precision (in our case, any number n ∈ N) [14, Section 11.1].
The set of operations must, at least, provide the features to define and reproduce
recursive functions [9, Section 4, p. 196], free access to resources (memory units
or program instructions) as the unconstrained head of the Turing machine, a
signalization of end of computation and be restricted to the set N. Therefore,
the set O can be defined using four operations: zero, successor, decrements or
jump and halt [14, Table 11.1-1]. Nevertheless, we have chosen to embrace both
the standard and the extended2 Shepherdson’s and Sturgis’ register machine
model [18, Sections 2 and 4].

Definition 1 (Standard Register Machine). A (standard) register machine
R is a computational device defined as

R = (R,O, P)

where:

1. R = {R1, R2, . . . , Rm} is a finite set of infinite capacity registers, with m ∈
N;

2. O = {INC, DEC, JNZ, HALT} is the set of operations;
3. P = (I1, I2, . . . , In) is the program, with n ∈ N.

2 The original model of what we call Shepherdson’s and Sturgis’ extended register
machine model [18, Sections 2] does not contain the JNZ instruction: it is introduced
later and is shown that both JMP and JZ can be rewritten in terms of JNZ [18,
Section 4, p. 225].

The execution of the program P always start at the first instruction I1 and pro-
ceeds sequentially (unless for programmed execution re-route).

Definition 2 (Extended Register Machine). An extended register machine
R is a standard register machine as in Definition 1 with the set of operations O
defined as

O = {INC, DEC, CLR, JMP, JZ, JNZ, HALT}

The concept of instruction of a register machine R (as referenced in Def-
inition 1) is simply a convenient notation to name the operations in O over
addressed registers Ri ∈ R or other instructions; the behaviour of those men-
tioned so far is described in Definition 3.

Definition 3 (Instructions). Let the content of register Ri be equal to x.
Then, the definition of the instructions in the set I derived of the operations
in O for the register machine R is:

1. INC(Ri) ≡ Ri ← x+ 1

2. DEC(Ri) ≡

{

Ri ← x− 1 , if x > 0

Ri ← 0 , otherwise

3. CLR(Ri) ≡ Ri ← 0

4. JMP(Ij) change the execution flow of R setting Ij as the next instruction to
be executed;

5. JZ(Ri, Ij) change the execution flow of R setting Ij as the next instruction
to be executed in case x = 0; otherwise, the execution flow keeps sequential;

6. JNZ(Ri, Ij) change the execution flow of R setting Ij as the next instruction
to be executed in case x > 0; otherwise, the execution flow keeps sequential;

7. HALT ends the computation of R.

We also define three subprograms, CPY, ADD and SUB
3, to simplify some of

the algorithms included in this text. CPY simply copy the contents of the origin
register R1 to the destination one, R2, overwriting its values; the other two
algorithms represent respectively the arithmetical operations of addition and
subtraction and allow the destination register (R3 in the Algorithms 2 and 3)
to be one of the terms of the operation (R1 or R2), a desired property that also
contributes for the conciseness of the codes in the Section 4.

The above definitions of register machine specify a very simple and powerful
computation model very close to the real implementation of hardware architec-
ture and can be translated to a series of other models, such as software instruc-
tions, digital circuits and metabolic systems [6], serving as an useful intermediate
language.

3 The exponential notation used in the algorithms are repetition of the commands as
originally defined by Shepherdson and Sturgis [18, Sections 2].

Algorithm 1 CPY subprogram, where R2 ← R1

1 CLR(Rα)
2 CLR(R2)
3 {INC(Rα), INC(R2)}

R1

4 {INC(R1)}
Rα

Algorithm 2 ADD subprogram, where R3 ← R1 +R2

1 CLR(Rα)
2 CLR(Rβ)
3 CPY(R1, Rα)
4 {INC(Rα), INC(Rβ)}

R2

5 {INC(R2)}
Rβ

6 CPY(Rα, R3)

3 Metabolic P Systems

Metabolic P (for short, MP) systems are a particular type of formalism inside
the class of membrane computing. Originally, it has been developed inspired
by the purposes of P systems but specialized to the modelling of biological
dynamics [11, p. 64] (particularly, metabolic ones).

Concerning its features, MP systems inherit the basic structures of its super-
class [15, Section 2] (membrane structure, multisets of objects and rules), but
also possess those of discrete dynamical systems [8, Chapter 2] such as discrete
step of execution, parallel execution of all of their rules and feedback-like up-
date of their state variables. The elements and the influence of both perspectives
mentioned above can be seen in the formal (and modular) definition of the MP
systems [10, Chapter 3] given below.

Definition 4 (MP grammar). An MP grammar G is a generative grammar
for time series defined as

G = (M,R, I, Φ)

where:

1. M = {x1, x2, . . . , xn} the finite set of substances (variables or metabolites),
and n ∈ N the number of substances.

Algorithm 3 SUB subprogram, where R3 ← R1 −R2

1 CLR(Rα)
2 CLR(Rβ)
3 CPY(R1, Rα)
4 {JZ(Rα, 5), DEC(Rα), INC(Rβ)}

R2

5 {INC(R2)}
Rβ

6 CPY(Rα, R3)

2. R = {αj → βj : 1 ≤ j ≤ m} the set of rules (or reactions), with αj and βj

multisets over M , and m ∈ N the number of reactions.
3. I = (x1[0], x2[0], . . . , xn[0]) is the vector of initial values of the substances or

the metabolic state at initial step (step zero or t0).
4. Φ = {ϕ1, ϕ2, . . . , ϕm} is a set of functions (also called regulators), in which

every ϕj : R
n 7→ R, for 1 ≤ j ≤ m, is associated with a rule rj ∈ R.

The above, static definition of MP grammar encompasses all its composing
elements as well as all membrane computing features: the membrane structure
represented by the grammar G itself, the multisets defined by the metabolites M
and their initial states I and the rules through the sets R and Φ. And although
the set of fluxes Φ also indicates features of dynamical systems, it is essential to
define the recurrent computational process of the state variables (i.e., metabo-
lites quantities) in order to give MP systems a dynamical behaviour.

Definition 5 (Stoichiometric matrix). Given an MP grammar G = (M,R, I, Φ),
let ri ∈ R be an MP rule of the form αi → βi as in Definition 4.

The operator mult+(xj , ri) retrieves the multiplicity of the metabolite xj in
the right-side of the rule (i.e., in βi). Its counterpart mult−(xj , ri) operates
similarly, but over the multiset αi.

Then, a stoichiometric matrix A for the MP grammar G has each of its
elements defined by

ap,q = mult+(xp, rq)−mult−(xp, rq)

for 1 ≤ p ≤ |M | and 1 ≤ q ≤ |R|.

Definition 6 (Equational Metabolic Algorithm (EMA)). At a given time
ti ∈ N, let ϕj(ti) be the computed value of the flux ϕj at time ti and U [ti] =

(ϕ1(ti), ϕ2(ti), . . . , ϕm(ti))
T
the vector of all fluxes’ values at that step.

The vector of substance variation at step ti, ∆[ti], is defined by the equation

∆[ti] = A× U [ti]

and the so-called Equational Metabolic Algorithm, which computes the value of
any substance in the future time step ti+1, is computed through the following
recurrent equation

X[ti+1] = X[ti] +∆[ti]

Definition 7 (MP system). A MP systemM is a discrete dynamical system
defined4 as

M = (G, τ)

with
4 This definition of MP system is a simplification over the one presented in [10, p. 109]:
the concepts of number ν of conventional mole and vector µ of mole masses are useful
in some circumstances, but not essential—specially in the context of the present
work.

1. G being an MP grammar following the definition 4;

2. τ ∈ R, the period (amount of time) of a computational step;

Hence, a static MP grammar becomes an MP (dynamical) system through
the existence of a procedure to compute its future states (Definition 6) and an
association with a time scale (Definition 7).

3.1 The MP+ Class of Systems

There is a (sub)class of MP systems, introduced in [6], called positively controlled
MP systems (or, for short, MP+) which restricts the quantities of MP substances
to the infimum of zero. With such attribute, this kind of system is suitable for
correspondences with biological system, in which quantities are represented in
the set N or R

+, and is enough to present itself as a Turing-powerful model
equivalent to register machine [6].

Definition 8 (MP+ Grammar). A MP+ grammar G′ = (M,R, I ′, Φ′) is a
derivation from a (standard) MP grammar G = (M,R, I, Φ) if its vector of initial
values for substances I ′ has all components greater than zero and G′ respects the
following restrictions at every computational step ti:

1. ϕ′(ti) =

{

ϕ(ti) , if ϕ(ti) ≥ 0

0 , otherwise
, for all ϕ′ ∈ Φ′ and their correspondents

ϕ ∈ Φ;

2.
∑

ϕ′∈Φ′−

x

ϕ′(ti) ≤ x, where the set of consuming fluxes of the metabolite x

is defined as Φ′−

x =
{

ϕ′

j : mult−(x, rj) > 0, ∀rj ∈ R
}

; otherwise, ϕ′(ti) =

0, ∀ϕ′ ∈ Φ′−

x at the execution step ti.

From the procedures to transform a register machine (Definition 1) into a
MP+ system [6, Section V] arises a pattern which establishes a minimalist and
deterministic metabolic P counterpart model of a register machine, the MP+ to
variable gap (MP+V).

Definition 9 (MP+V Grammar). A MP+V grammar G = (M,R, I, Φ) is a
MP+ one in which:

1. ∀r ∈ R and v′, v′′ ∈M , r must have one of the following shapes:

(a) ∅ → v′′;

(b) v′ → ∅; or
(c) v′ → v′′;

2. ∀ϕ ∈ Φ and m′,m′′ ∈M , the flux has either the form ϕ = m′ or ϕ = m′−m′′.

4 Translation of MP+V Systems into Register Machine

Programs

From the equivalence result between MP systems and Turing machines [6], it
is easy to realize that any given algorithm A represented in register machine
notation, which we may conveniently call AR, can also be expressed in MP terms
(or, simply, as AM). From this equivalence also derives the transformation on
the other way round, i.e. TM : AM 7→ AR, translating any MP algorithm into a
register machine one. In fact, TM is the present focus of this work.

To simplify its definition, we are going to restrict the input MP system to
the MP+V class, without loss of generality (Section 3). This class of systems is
chosen because:

1. it is the output from the transformation TR : AR 7→ AM [6];
2. all of its fluxes ϕ ∈ Φ are functions of the type N 7→ N, meaning the opera-

tions of MP+V systems are performed over the set N of number as those in
the register machine; and,

3. it presents a reduced varieties set of rules with only two types of fluxes: single
variable or subtraction of two variables.

Although TM may sound a trivial inverse transformation of TR, its definition
poses challenges that require proper treatment in order to provide a correct and
total transformation of every AM into AR. Hence, we dedicate the remainder of
this section to describe and give mathematical treatment for all of them.

4.1 The Caveats of MP+V

The MP+V systems have two intrinsic properties nonexistent in most of the
computational formalism (including the register machines) that require attentive
study before any attempt to define a translation procedure between the systems.
These properties are the unordered, parallel application of the rules and the
positive control property.

Inheritance of the P systems, the parallel application of the MP+V rules has
a meaning in the metabolic systems since it describes different contexts regu-
lated by chemical rules independent among each other, inside the cell fluid and
behaving under the Brownian rules; the dependency, when existent, is expressed
by the fluxes of the rules.

This parallelism of the rules is converted to sequential steps through the es-
tablishment of a block of execution (such as those present in program languages)
in which all the rules and its fluxes are computed for all the variables over
auxiliary values, as if the variable values were frozen while the block is being
computed. Figure 1 explains the process.

The positive control, on the other side, is a system’s property which requires
the variable values to be greater than or equal the sum of all its consuming
fluxes; this restriction, thought to not allow negative quantities of metabolites,
is not completely satisfied by the subtraction in N and must be implemented
as a special routine when translating MP+V to register machine according to
Definition 8.

r1 r2 · · · rn r1 r2 · · · rn

t0 t1 t2

Fig. 1. Graphical representation of the block of execution. The continuous lines repre-
sent the actual, sequential execution steps while the dotted ones represent the standard,
parallel computation steps of MP systems.

4.2 The MP+V Rules

The MP+V systems, as a result of the AR 7→ AM translation procedure [6,
Theorem 1], generates simply four kinds of MP rules that add quantity to a
variable V1 (i.e., ∅ → V1), remove quantity from it (V1 → ∅), transfer quantity
to another variable V2 (in the form of the rule V1 → V2) or, halts the computation
(V1 → HALT), which requires the additional, special purpose metaboliteHALT

to signalize the end of the procedure5. All of them may be combined solely with
fluxes controlled by a single referenced variable (e.g. V1) or a subtraction of two
variables (V1 − V2).

The translation procedures of TM for each of the above MP rules resemble
inverse versions of those in TR [6, Section V]. Nonetheless, additional operations
are added in order to provide the correct behavior for any inputted MP+V
system, not only those outputted from a TR transformation.

The strictly increasing MP rule, the one of the form ∅ → V1 : ϕ, simply add
the value of the ϕ(t) (at time t) to the variable V1; as a recurrent expression,
it may be expressed as V1[t + 1] = V1[t] + ϕ(t). In the context of the extended
register machine, with RV1

as the register address of the variable V1, Rϕ as
the one for ϕ(t) and Raux the address for an auxiliary variable, we have the
translation of strictly increasing MP rule as

Algorithm 4 Strictly increasing MP rule as Register Machine code.

1 ADD(RV1
, Rϕ, Raux)

2 CPY(Raux, RV1
)

Similarly, the strictly decreasing MP rule V1 → ∅ : ϕ is mathematically
represented as V1[t + 1] = V1[t] − ϕ(t) and produces a translation code of the
form

The transfer MP rule, V1 → V2 : ϕ, can be seen as a composition of both
previous rules according to I/O MP systems [10, Chapter 3]; hence, it is not a
single recurrent equation, but two of them (Equation 2). Consequently, as can
be seen in Algorithm 6, the register machine subprogram for its transformation
is simply a concatenation of the previous Algorithms 4 and 5.

5 In order to differentiate the two “halts” in this paper, HALTwill represent the halting
instruction in register machines while HALT the metabolite in MP+V systems.

Algorithm 5 Strictly decreasing MP rule as Register Machine code.

1 SUB(RV1
, Rϕ, Raux)

2 CPY(Raux, RV1
)

V1[t+ 1] = V1[t]− ϕ(t) (1)

V2[t+ 1] = V2[t] + ϕ(t) (2)

Algorithm 6 Transfer MP rule as Register Machine code.

1 SUB(RV1
, Rϕ, Raux)

2 CPY(Raux, RV1
)

3 ADD(RV2
, Rϕ, Raux)

4 CPY(Raux, RV2
)

Finally, the halting rule V1 → HALT : ϕ simply signalizes the end of the
computation when the quantity of the HALT variable is greater than zero.
Hence, the produced code verifies if there is a halting situation (and halts if
there is), otherwise updates the quantity of V1 and halts the execution.

Algorithm 7 Halting MP rule as Register Machine code.

1 JNZ(RHALT , 3)
2 JMP(4)
3 HALT

4 SUB(RV1
, Rϕ, Raux)

5 CPY(Raux, RV1
)

6 ADD(RHALT , Rϕ, Raux)
7 CPY(Raux, RHALT)

As already discussed and graphically shown in Figure 1, one computational
step of MP+V systems is expanded in several register machine instructions which
also include a framework of operations reflecting properties of MP+V nonexistent
in the addressed architecture. These additional operations are, now, studied in
details.

4.3 Surroundings of MP+V Steps

Translating the rules of MP+V systems to register machine subprograms is just
one of the parts to correct transform one system into another. As can be seen in
Figure 2 (and previously discussed in Section 4.1), it is necessary to define (i) a

sequential, computation block referent to the execution of a step in the MP+V
dynamics; (ii) guards for the variables to isolate the computation of the future
value (i.e., V [t + 1]) with the actual value V [t]; (iii) evaluation of the positive
control property; and, finally, (iv) the recurrent call of the dynamical system.

copy

variable

to its

auxiliaries

compute

fluxes

values

positivity

control

compute

rules
update

variables

positivity

control
compute rules

ti ti+1

· · ·

· · ·

· · ·

· · ·

Fig. 2. Representation of a computation step MP+V systems (lower part) and its
equivalent register machine (upper part).

The sequential block for computation is nothing more than the simply con-
catenation of the subprograms (ii) and (iii); it is the upper arc in Figure 2 which,
in a sequential way, process all the requirement procedures for the computation
of a single MP+V step as a register machine.

The guards, by the other hand, are specialized pieces of code that keep the
variables unchanged during the sequential execution of the MP+V step; as can
be seen in Figure 2, they represent all the surplus of operations nonexistent in the
MP+V track: copy of the values of variables into auxiliary registers, computation
of fluxes with assignment to particular registers and update of the variables value
after step computation.

There is the necessity to freeze the values of the variables and rely on auxiliary
register copies of them because rules and fluxes may reference the quantity of
the variable V [ti] at time ti, not an intermediary and already changed value
V [ti + ǫ] in a time ti + ǫ, with 0 < ǫ < 1, solely existing in the sequential (or
register machine) context: changes on variables quantities must occur uniquely in
the end of the computational step, in accordance to the behaviour of dynamical
systems.

A similar pattern arises for the fluxes values. Fluxes must be updated at every
MP+V step and their values must be promptly available for the re-computation
of the variable quantities according to the application of the rules. Moreover,
fluxes values are subject to the positivity control (Definition 8) which, in case
of nonsatisfiability of the property, sets the appropriate fluxes to zero; hence,
instead of performing computations of fluxes and their verification at each rule
application, it is enough to consult their values in their respective dedicated
registers.

All these guards demand simplistic algorithms: the copy and update of vari-
ables rely on the CPY instruction, while the fluxes, depending of their nature,
either on the CPY or the subtraction subprogram SUB.

Algorithm 8 Copy variable to its auxiliary register.

1 CPY(RV , RVaux)

Algorithm 9 Update variable with its auxiliary register value.

1 CPY(RVaux , RV)

The translation of the positivity control property to the register machine
specification, though, is slightly more intricate: while in the MP+V systems it
is enough to state as a system’s property, in the register machine it must be
ensured by actually coding both constraints stated in Definition 8.

The first of them is a statement, in mathematical terms, that any flux ϕ

is a function with co-domain equals to the natural set of numbers N, an easily
satisfied requirement since the values of the registers (and, hence, variables) are
restricted to N by the register machine definition (Definition 1) and the fluxes
are restricted to monomials or subtraction of variables. As we have already
seen, the SUB subprogram has mechanism to guarantee no value goes below zero
(Section 2).

Conversely, the other constraint requires a special subprogram to satisfy its
conditions. It sets to zero all consuming fluxes for a certain variable V if the sum
of them are greater than the actual available quantity of V . In mathematical

terms, if Φ−

V is the set of consuming fluxes of V ,
∑

ϕ∈Φ−

V

ϕ(ti) ≤ Vti at time ti;

otherwise ∀ϕ ∈ Φ−

V , ϕ(ti) = 0. Since the compiler knows both the variable V

and the consuming fluxes Φ−

V = {ϕ1, ϕ2, . . . , ϕk} (with k =
∣

∣Φ−

V

∣

∣), the generated
subprogram does not have to seek for this information and, for each variable,
can have the form of Algorithm 11.

The explicit references to the fluxes in Algorithm 11 in both computation
of the sum (lines 2 to k + 1) and the invalidation of the fluxes (lines k + 8 to
2 · k + 7) makes positivity control property the biggest contributor for the line
of codes in the equivalent register machine version of a MP+V system.

Finally, we must ensure the recurrent computation of the MP+V in the TM
transformation. From examples such as Goniometricus or Sirius [10, Chapter 3],
we know that some MP systems work as infinite series or signal generator, in-
definitely computing values without an explicit procedure for stopping them; in
contrast, functions such as max(R1, R2) implemented in [6, Figure 4] converges

Algorithm 10 Update the flux value.

if ϕ = V then

1 CPY(RV , Rϕ)
else ⊲ Hence, ϕ = V1 − V2

1 SUB(RV1
, RV2

, Rϕ)
end if

Algorithm 11 Positivity control algorithm.

1 CLR(Rsum)
2 ADD(Rϕ1

, Rsum, Rsum)
3 ADD(Rϕ1

, Rsum, Rsum)
4 ADD(Rϕ2

, Rsum, Rsum)
...

k+1 ADD(Rϕk
, Rsum, Rsum)

k+2 CPY(RV , Rcomparator)
k+3 JZ(Rsum, 2 · k + 8)
k+4 JZ(Rcomparator, k + 8)
k+5 DEC(Rsum)
k+6 DEC(Rcomparator)
k+7 JMP(k + 3)
k+8 CLR(Rϕ1

)
k+9 CLR(Rϕ2

)
...

2·k+7 CLR(Rϕk
)

to a particular fixed-point (halt) state which signalizes the end of the calcula-
tion process of the system [6, Section V-2-c]. The differentiation between them,
nonetheless, relies solely in the existence of a variable HALT in the latter sys-
tem, as well as a strictly increasing or transfer rule which increments the value
of HALT . Hence, in terms of register machine, these systems diverge in the
existence of a RHALT register and an instruction to stop the execution when
RHALT 6= 0.

As can be seen in Figure 2, all the register machine code generated by the
transformation TM : AM 7→ AR is enclosed inside two sequential steps ti and
ti+1, except by the recurrent call of the dynamical system. In fact, all the com-
putation performed by the equivalent register machine (i.e., all the algorithms
seen so far) is, actually, the computation of a single MP+V step. The objec-
tive of the recurrent call is, then, to recall the computation procedures up to
the moment RHALT 6= 0; to achieve it, the procedure verifies the state of the
RHALT before step reckoning and chooses if the program should be halt (a jump
to the last line of the program, ℓ, where a HALT is always present) or continue
with normal execution; in case of the latter, the penultimate line of the program
(ℓ− 1) redirects the execution back to the first line. In algorithm terms:

Algorithm 12 Loop control of the dynamical systems that halts.

1 JNZ(RHALT , ℓ)
...

ℓ-1 JMP(1)
ℓ HALT

The pseudo-code produced by the transformation is finally represented in
Algorithm 13.

Algorithm 13 Complete translation procedure from MP+V system to register
machine

while RHALT = 0 do

for all variable v ∈M do ⊲ copy variables to auxiliaries
Rv′ ← Rv

end for

for all flux ϕ ∈ Φ do ⊲ compute fluxes
Rϕ ← ϕ(ti)

end for

for all variable v ∈M do ⊲ positivity control property
for all flux ϕ−

v ∈ Φ−

v do

Rsum ← Rsum +R
ϕ
−

v

end for

if Rsum > v then

for all flux ϕ−

v ∈ Φ−

v do

R
ϕ
−

v
← 0

end for

end if

end for

for all rule r do ⊲ compute rules
if r is of the form ∅ → v : ϕ then

Rv′ ← Rv′ + ϕ

else if r is of the form v → ∅ : ϕ then

Rv′ ← Rv′ − ϕ

else ⊲ hence, it must be of the form v1 → v2 : ϕ
Rv′

1
← Rv′

1
+ ϕ

Rv′

2
← Rv′

2
− ϕ

end if

end for

for all variable v ∈M do ⊲ update variables
Rv ← Rv′

end for

end while

5 Conclusion

There were no doubts of the possibility to translate MP systems to register
machine or any other Turing-powerful formalism: the discrete and deterministic
characteristics of these metabolic systems are exactly those that guarantee the
feasibility of this translation. The novelty, on the other hand, relies in the direct
transformation of modelling languages with completely different paradigms: from
the metabolic, parallel and centered on pair of substances transformations to a

computational and holistically oriented sequence of instructions standpoint; from
MP systems to von Neumann architecture.

It is worth to note that it is not the target language (here the register ma-
chine, but equivalently for hardware description or programming ones), but the
idea of an algorithmic transformation between models that permits the effort-
less and automatic translation of metabolic systems into either pieces of software
(e.g., for simulation purposes), hardware (such as [4, 7, 16]), visual representa-
tions (automata) or any other common use case for exogenous model transfor-
mation [2, Chapter 8].

Finally, the availability of the bidirectional translation and equivalence be-
tween MP+V systems and register machines open the way for implementation
of circuits based on metabolic (MP) systems.

Bibliography

[1] Jacob Beal, Ting Lu, and Ron Weiss, Automatic compilation from high-level

biologically-oriented programming language to genetic regulatory networks., PloS
one 6 (January 2011), no. 8, e22490.

[2] Marco Brambilla, Jordi Cabot, and Manuel Wimmer, Model-driven software en-

gineering in practice, Synthesis Lectures on Software Engineering 1 (2012Sep),
no. 1, 1–182.

[3] Alberto Castellini, Giuditta Franco, and Vincenzo Manca, Hybrid functional petri

nets as MP systems, Natural Computing 9 (2010), 61–81.
[4] Luis Fernandez, Vı́ctor J. Martinez, Fernando Arroyo, and Luis F. Mingo, A hard-

ware circuit for selecting active rules in transition P systems, Seventh interna-
tional symposium on symbolic and numeric algorithms for scientific computing
(synasc’05), 2005, pp. 4 pp.

[5] Marian Gheorghe and Mike Stannett, Membrane system models for super-Turing

paradigms, Natural computing, August 2012, pp. 253–259.
[6] Ricardo Henrique Gracini Guiraldelli and Vincenzo Manca, The Computational

Universality of Metabolic Computing, 2015. Available as pre-print at http://

arxiv.org/abs/1505.02420.
[7] Lauren Gravitz, Cell on a Chip, MIT Technology Review, 2009. Available online

at http://www.technologyreview.com/news/414622/cell-on-a-chip/.
[8] Diederich Hinrichsen and Anthony J. Pritchard, Mathematical Systems Theory

I: Modelling, State Space Analysis, Stability and Robustness, Texts in Applied
Mathematics, vol. 48, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[9] Harry Lewis and Christos Papadimitriou, Elements of the Theory of Computation,
2nd ed., Prentice-Hall, Upper Saddle River, 1997.

[10] Vincenzo Manca, Infobiotics: Information in Biotic Systems, Emergence, Com-
plexity and Computation, vol. 3, Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

[11] Vincenzo Manca, Luca Bianco, and Federico Fontana, Evolution and oscillation

in p systems: Applications to biological phenomena, Membrane computing, 2005,
pp. 63–84 (English).

[12] Vincenzo Manca and Rosario Lombardo, Computing with multi-membranes, Mem-
brane computing, 2012, pp. 282–299 (English).

[13] Vincenzo Manca and Luca Marchetti, Solving dynamical inverse problems by

means of Metabolic P systems., Bio Systems 109 (July 2012), no. 1, 78–86.
[14] Marvin Minsky, Computation: Finite and Infinite Machines, 1st ed., Prentice Hall,

1967.
[15] Gheorghe Păun, A quick introduction to membrane computing, Journal of Logic

and Algebraic Programming 79 (2010), 291–294.
[16] Rahul Sarpeshkar, Ultra-Low Power Bioelectronics. 1, 1st ed., Cambridge Univer-

sity Press, 2010.
[17] , Analog synthetic biology., Philosophical transactions. Series A, Mathe-

matical, physical, and engineering sciences 372 (March 2014), no. 2012, 20130110.
[18] J. C. Shepherdson and H. E. Sturgis, Computability of Recursive Functions, Jour-

nal of the ACM 10 (1963), 217–255.
[19] Hava T. Siegelmann and Shmuel Fishman, Analog computation with dynamical

systems, Physica D: Nonlinear Phenomena October (1998), 1–38.

